Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreunrn Structured version   Visualization version   Unicode version

Theorem icoreunrn 33207
Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreunrn.1  |-  I  =  ( [,) " ( RR  X.  RR ) )
Assertion
Ref Expression
icoreunrn  |-  RR  =  U. I

Proof of Theorem icoreunrn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 rexr 10085 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  RR* )
2 peano2re 10209 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
3 rexr 10085 . . . . . . . 8  |-  ( ( x  +  1 )  e.  RR  ->  (
x  +  1 )  e.  RR* )
42, 3syl 17 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
5 ltp1 10861 . . . . . . 7  |-  ( x  e.  RR  ->  x  <  ( x  +  1 ) )
6 lbico1 12228 . . . . . . 7  |-  ( ( x  e.  RR*  /\  (
x  +  1 )  e.  RR*  /\  x  <  ( x  +  1 ) )  ->  x  e.  ( x [,) (
x  +  1 ) ) )
71, 4, 5, 6syl3anc 1326 . . . . . 6  |-  ( x  e.  RR  ->  x  e.  ( x [,) (
x  +  1 ) ) )
8 df-ov 6653 . . . . . 6  |-  ( x [,) ( x  + 
1 ) )  =  ( [,) `  <. x ,  ( x  + 
1 ) >. )
97, 8syl6eleq 2711 . . . . 5  |-  ( x  e.  RR  ->  x  e.  ( [,) `  <. x ,  ( x  + 
1 ) >. )
)
10 opelxpi 5148 . . . . . . 7  |-  ( ( x  e.  RR  /\  ( x  +  1
)  e.  RR )  ->  <. x ,  ( x  +  1 )
>.  e.  ( RR  X.  RR ) )
112, 10mpdan 702 . . . . . 6  |-  ( x  e.  RR  ->  <. x ,  ( x  + 
1 ) >.  e.  ( RR  X.  RR ) )
12 fvres 6207 . . . . . 6  |-  ( <.
x ,  ( x  +  1 ) >.  e.  ( RR  X.  RR )  ->  ( ( [,)  |`  ( RR  X.  RR ) ) `  <. x ,  ( x  + 
1 ) >. )  =  ( [,) `  <. x ,  ( x  + 
1 ) >. )
)
1311, 12syl 17 . . . . 5  |-  ( x  e.  RR  ->  (
( [,)  |`  ( RR 
X.  RR ) ) `
 <. x ,  ( x  +  1 )
>. )  =  ( [,) `  <. x ,  ( x  +  1 )
>. ) )
149, 13eleqtrrd 2704 . . . 4  |-  ( x  e.  RR  ->  x  e.  ( ( [,)  |`  ( RR  X.  RR ) ) `
 <. x ,  ( x  +  1 )
>. ) )
15 icoreresf 33200 . . . . . . . 8  |-  ( [,)  |`  ( RR  X.  RR ) ) : ( RR  X.  RR ) --> ~P RR
1615fdmi 6052 . . . . . . 7  |-  dom  ( [,)  |`  ( RR  X.  RR ) )  =  ( RR  X.  RR )
1710, 16syl6eleqr 2712 . . . . . 6  |-  ( ( x  e.  RR  /\  ( x  +  1
)  e.  RR )  ->  <. x ,  ( x  +  1 )
>.  e.  dom  ( [,)  |`  ( RR  X.  RR ) ) )
182, 17mpdan 702 . . . . 5  |-  ( x  e.  RR  ->  <. x ,  ( x  + 
1 ) >.  e.  dom  ( [,)  |`  ( RR  X.  RR ) ) )
19 ffun 6048 . . . . . . . 8  |-  ( ( [,)  |`  ( RR  X.  RR ) ) : ( RR  X.  RR )
--> ~P RR  ->  Fun  ( [,)  |`  ( RR  X.  RR ) ) )
2015, 19ax-mp 5 . . . . . . 7  |-  Fun  ( [,)  |`  ( RR  X.  RR ) )
21 fvelrn 6352 . . . . . . 7  |-  ( ( Fun  ( [,)  |`  ( RR  X.  RR ) )  /\  <. x ,  ( x  +  1 )
>.  e.  dom  ( [,)  |`  ( RR  X.  RR ) ) )  -> 
( ( [,)  |`  ( RR  X.  RR ) ) `
 <. x ,  ( x  +  1 )
>. )  e.  ran  ( [,)  |`  ( RR  X.  RR ) ) )
2220, 21mpan 706 . . . . . 6  |-  ( <.
x ,  ( x  +  1 ) >.  e.  dom  ( [,)  |`  ( RR  X.  RR ) )  ->  ( ( [,)  |`  ( RR  X.  RR ) ) `  <. x ,  ( x  + 
1 ) >. )  e.  ran  ( [,)  |`  ( RR  X.  RR ) ) )
23 icoreunrn.1 . . . . . . 7  |-  I  =  ( [,) " ( RR  X.  RR ) )
24 df-ima 5127 . . . . . . 7  |-  ( [,) " ( RR  X.  RR ) )  =  ran  ( [,)  |`  ( RR  X.  RR ) )
2523, 24eqtri 2644 . . . . . 6  |-  I  =  ran  ( [,)  |`  ( RR  X.  RR ) )
2622, 25syl6eleqr 2712 . . . . 5  |-  ( <.
x ,  ( x  +  1 ) >.  e.  dom  ( [,)  |`  ( RR  X.  RR ) )  ->  ( ( [,)  |`  ( RR  X.  RR ) ) `  <. x ,  ( x  + 
1 ) >. )  e.  I )
2718, 26syl 17 . . . 4  |-  ( x  e.  RR  ->  (
( [,)  |`  ( RR 
X.  RR ) ) `
 <. x ,  ( x  +  1 )
>. )  e.  I
)
28 elunii 4441 . . . 4  |-  ( ( x  e.  ( ( [,)  |`  ( RR  X.  RR ) ) `  <. x ,  ( x  +  1 ) >.
)  /\  ( ( [,)  |`  ( RR  X.  RR ) ) `  <. x ,  ( x  + 
1 ) >. )  e.  I )  ->  x  e.  U. I )
2914, 27, 28syl2anc 693 . . 3  |-  ( x  e.  RR  ->  x  e.  U. I )
3029ssriv 3607 . 2  |-  RR  C_  U. I
31 frn 6053 . . . . 5  |-  ( ( [,)  |`  ( RR  X.  RR ) ) : ( RR  X.  RR )
--> ~P RR  ->  ran  ( [,)  |`  ( RR  X.  RR ) )  C_  ~P RR )
3215, 31ax-mp 5 . . . 4  |-  ran  ( [,)  |`  ( RR  X.  RR ) )  C_  ~P RR
3325, 32eqsstri 3635 . . 3  |-  I  C_  ~P RR
34 uniss 4458 . . . 4  |-  ( I 
C_  ~P RR  ->  U. I  C_ 
U. ~P RR )
35 unipw 4918 . . . 4  |-  U. ~P RR  =  RR
3634, 35syl6sseq 3651 . . 3  |-  ( I 
C_  ~P RR  ->  U. I  C_  RR )
3733, 36ax-mp 5 . 2  |-  U. I  C_  RR
3830, 37eqssi 3619 1  |-  RR  =  U. I
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   ~Pcpw 4158   <.cop 4183   U.cuni 4436   class class class wbr 4653    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181
This theorem is referenced by:  istoprelowl  33208  relowlssretop  33211  relowlpssretop  33212
  Copyright terms: Public domain W3C validator