MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   Unicode version

Theorem infpssr 9130
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  om 
~<_  A )

Proof of Theorem infpssr
Dummy variables  y 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4039 . . 3  |-  ( X 
C.  A  ->  E. y
( y  e.  A  /\  -.  y  e.  X
) )
21adantr 481 . 2  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  E. y ( y  e.  A  /\  -.  y  e.  X ) )
3 eldif 3584 . . . 4  |-  ( y  e.  ( A  \  X )  <->  ( y  e.  A  /\  -.  y  e.  X ) )
4 pssss 3702 . . . . . 6  |-  ( X 
C.  A  ->  X  C_  A )
5 bren 7964 . . . . . . . 8  |-  ( X 
~~  A  <->  E. f 
f : X -1-1-onto-> A )
6 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  f : X -1-1-onto-> A )
7 f1ofo 6144 . . . . . . . . . . . . 13  |-  ( f : X -1-1-onto-> A  ->  f : X -onto-> A )
8 forn 6118 . . . . . . . . . . . . 13  |-  ( f : X -onto-> A  ->  ran  f  =  A
)
96, 7, 83syl 18 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  ran  f  =  A )
10 vex 3203 . . . . . . . . . . . . 13  |-  f  e. 
_V
1110rnex 7100 . . . . . . . . . . . 12  |-  ran  f  e.  _V
129, 11syl6eqelr 2710 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  A  e.  _V )
13 simplr 792 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  X  C_  A )
14 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  y  e.  ( A  \  X
) )
15 eqid 2622 . . . . . . . . . . . 12  |-  ( rec ( `' f ,  y )  |`  om )  =  ( rec ( `' f ,  y )  |`  om )
1613, 6, 14, 15infpssrlem5 9129 . . . . . . . . . . 11  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  ( A  e.  _V  ->  om  ~<_  A ) )
1712, 16mpd 15 . . . . . . . . . 10  |-  ( ( ( y  e.  ( A  \  X )  /\  X  C_  A
)  /\  f : X
-1-1-onto-> A )  ->  om  ~<_  A )
1817ex 450 . . . . . . . . 9  |-  ( ( y  e.  ( A 
\  X )  /\  X  C_  A )  -> 
( f : X -1-1-onto-> A  ->  om  ~<_  A ) )
1918exlimdv 1861 . . . . . . . 8  |-  ( ( y  e.  ( A 
\  X )  /\  X  C_  A )  -> 
( E. f  f : X -1-1-onto-> A  ->  om  ~<_  A ) )
205, 19syl5bi 232 . . . . . . 7  |-  ( ( y  e.  ( A 
\  X )  /\  X  C_  A )  -> 
( X  ~~  A  ->  om  ~<_  A ) )
2120ex 450 . . . . . 6  |-  ( y  e.  ( A  \  X )  ->  ( X  C_  A  ->  ( X  ~~  A  ->  om  ~<_  A ) ) )
224, 21syl5 34 . . . . 5  |-  ( y  e.  ( A  \  X )  ->  ( X  C.  A  ->  ( X  ~~  A  ->  om  ~<_  A ) ) )
2322impd 447 . . . 4  |-  ( y  e.  ( A  \  X )  ->  (
( X  C.  A  /\  X  ~~  A )  ->  om  ~<_  A )
)
243, 23sylbir 225 . . 3  |-  ( ( y  e.  A  /\  -.  y  e.  X
)  ->  ( ( X  C.  A  /\  X  ~~  A )  ->  om  ~<_  A ) )
2524exlimiv 1858 . 2  |-  ( E. y ( y  e.  A  /\  -.  y  e.  X )  ->  (
( X  C.  A  /\  X  ~~  A )  ->  om  ~<_  A )
)
262, 25mpcom 38 1  |-  ( ( X  C.  A  /\  X  ~~  A )  ->  om 
~<_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574    C. wpss 3575   class class class wbr 4653   `'ccnv 5113   ran crn 5115    |` cres 5116   -onto->wfo 5886   -1-1-onto->wf1o 5887   omcom 7065   reccrdg 7505    ~~ cen 7952    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-en 7956  df-dom 7957
This theorem is referenced by:  isfin4-2  9136
  Copyright terms: Public domain W3C validator