Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfldidl2 Structured version   Visualization version   Unicode version

Theorem isfldidl2 33868
Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
isfldidl2.1  |-  G  =  ( 1st `  K
)
isfldidl2.2  |-  H  =  ( 2nd `  K
)
isfldidl2.3  |-  X  =  ran  G
isfldidl2.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
isfldidl2  |-  ( K  e.  Fld  <->  ( K  e. CRingOps 
/\  X  =/=  { Z }  /\  ( Idl `  K )  =  { { Z } ,  X } ) )

Proof of Theorem isfldidl2
StepHypRef Expression
1 isfldidl2.1 . . 3  |-  G  =  ( 1st `  K
)
2 isfldidl2.2 . . 3  |-  H  =  ( 2nd `  K
)
3 isfldidl2.3 . . 3  |-  X  =  ran  G
4 isfldidl2.4 . . 3  |-  Z  =  (GId `  G )
5 eqid 2622 . . 3  |-  (GId `  H )  =  (GId
`  H )
61, 2, 3, 4, 5isfldidl 33867 . 2  |-  ( K  e.  Fld  <->  ( K  e. CRingOps 
/\  (GId `  H
)  =/=  Z  /\  ( Idl `  K )  =  { { Z } ,  X }
) )
7 crngorngo 33799 . . . . . . 7  |-  ( K  e. CRingOps  ->  K  e.  RingOps )
8 eqcom 2629 . . . . . . . 8  |-  ( (GId
`  H )  =  Z  <->  Z  =  (GId `  H ) )
91, 2, 3, 4, 50rngo 33826 . . . . . . . 8  |-  ( K  e.  RingOps  ->  ( Z  =  (GId `  H )  <->  X  =  { Z }
) )
108, 9syl5bb 272 . . . . . . 7  |-  ( K  e.  RingOps  ->  ( (GId `  H )  =  Z  <-> 
X  =  { Z } ) )
117, 10syl 17 . . . . . 6  |-  ( K  e. CRingOps  ->  ( (GId `  H )  =  Z  <-> 
X  =  { Z } ) )
1211necon3bid 2838 . . . . 5  |-  ( K  e. CRingOps  ->  ( (GId `  H )  =/=  Z  <->  X  =/=  { Z }
) )
1312anbi1d 741 . . . 4  |-  ( K  e. CRingOps  ->  ( ( (GId
`  H )  =/= 
Z  /\  ( Idl `  K )  =  { { Z } ,  X } )  <->  ( X  =/=  { Z }  /\  ( Idl `  K )  =  { { Z } ,  X }
) ) )
1413pm5.32i 669 . . 3  |-  ( ( K  e. CRingOps  /\  (
(GId `  H )  =/=  Z  /\  ( Idl `  K )  =  { { Z } ,  X } ) )  <->  ( K  e. CRingOps 
/\  ( X  =/= 
{ Z }  /\  ( Idl `  K )  =  { { Z } ,  X }
) ) )
15 3anass 1042 . . 3  |-  ( ( K  e. CRingOps  /\  (GId `  H )  =/=  Z  /\  ( Idl `  K
)  =  { { Z } ,  X }
)  <->  ( K  e. CRingOps  /\  ( (GId `  H
)  =/=  Z  /\  ( Idl `  K )  =  { { Z } ,  X }
) ) )
16 3anass 1042 . . 3  |-  ( ( K  e. CRingOps  /\  X  =/= 
{ Z }  /\  ( Idl `  K )  =  { { Z } ,  X }
)  <->  ( K  e. CRingOps  /\  ( X  =/=  { Z }  /\  ( Idl `  K )  =  { { Z } ,  X } ) ) )
1714, 15, 163bitr4i 292 . 2  |-  ( ( K  e. CRingOps  /\  (GId `  H )  =/=  Z  /\  ( Idl `  K
)  =  { { Z } ,  X }
)  <->  ( K  e. CRingOps  /\  X  =/=  { Z }  /\  ( Idl `  K
)  =  { { Z } ,  X }
) )
186, 17bitri 264 1  |-  ( K  e.  Fld  <->  ( K  e. CRingOps 
/\  X  =/=  { Z }  /\  ( Idl `  K )  =  { { Z } ,  X } ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   {csn 4177   {cpr 4179   ran crn 5115   ` cfv 5888   1stc1st 7166   2ndc2nd 7167  GIdcgi 27344   RingOpscrngo 33693   Fldcfld 33790  CRingOpsccring 33792   Idlcidl 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-drngo 33748  df-com2 33789  df-fld 33791  df-crngo 33793  df-idl 33809  df-igen 33859
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator