Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvxsconn Structured version   Visualization version   Unicode version

Theorem cvxsconn 31225
Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypotheses
Ref Expression
cvxpconn.1  |-  ( ph  ->  S  C_  CC )
cvxpconn.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  S )
cvxpconn.3  |-  J  =  ( TopOpen ` fld )
cvxpconn.4  |-  K  =  ( Jt  S )
Assertion
Ref Expression
cvxsconn  |-  ( ph  ->  K  e. SConn )
Distinct variable groups:    t, J    x, t, y, K    ph, t, x, y    t, S, x, y
Allowed substitution hints:    J( x, y)

Proof of Theorem cvxsconn
Dummy variables  z 
f  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvxpconn.1 . . 3  |-  ( ph  ->  S  C_  CC )
2 cvxpconn.2 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  S )
3 cvxpconn.3 . . 3  |-  J  =  ( TopOpen ` fld )
4 cvxpconn.4 . . 3  |-  K  =  ( Jt  S )
51, 2, 3, 4cvxpconn 31224 . 2  |-  ( ph  ->  K  e. PConn )
6 simprl 794 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f  e.  ( II 
Cn  K ) )
7 pconntop 31207 . . . . . . . . . 10  |-  ( K  e. PConn  ->  K  e.  Top )
85, 7syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
98adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  K  e.  Top )
10 eqid 2622 . . . . . . . . 9  |-  U. K  =  U. K
1110toptopon 20722 . . . . . . . 8  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
129, 11sylib 208 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  K  e.  (TopOn `  U. K ) )
13 iiuni 22684 . . . . . . . . . 10  |-  ( 0 [,] 1 )  = 
U. II
1413, 10cnf 21050 . . . . . . . . 9  |-  ( f  e.  ( II  Cn  K )  ->  f : ( 0 [,] 1 ) --> U. K
)
156, 14syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f : ( 0 [,] 1 ) --> U. K )
16 0elunit 12290 . . . . . . . 8  |-  0  e.  ( 0 [,] 1
)
17 ffvelrn 6357 . . . . . . . 8  |-  ( ( f : ( 0 [,] 1 ) --> U. K  /\  0  e.  ( 0 [,] 1
) )  ->  (
f `  0 )  e.  U. K )
1815, 16, 17sylancl 694 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( f `  0
)  e.  U. K
)
19 eqid 2622 . . . . . . . 8  |-  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )  =  ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } )
2019pcoptcl 22821 . . . . . . 7  |-  ( ( K  e.  (TopOn `  U. K )  /\  (
f `  0 )  e.  U. K )  -> 
( ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } )  e.  ( II  Cn  K )  /\  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ` 
0 )  =  ( f `  0 )  /\  ( ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) `  1 )  =  ( f ` 
0 ) ) )
2112, 18, 20syl2anc 693 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } )  e.  ( II  Cn  K )  /\  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ` 
0 )  =  ( f `  0 )  /\  ( ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) `  1 )  =  ( f ` 
0 ) ) )
2221simp1d 1073 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( ( 0 [,] 1 )  X.  {
( f `  0
) } )  e.  ( II  Cn  K
) )
23 iitopon 22682 . . . . . . . . . . 11  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
2423a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  II  e.  (TopOn `  (
0 [,] 1 ) ) )
253dfii3 22686 . . . . . . . . . . . 12  |-  II  =  ( Jt  ( 0 [,] 1 ) )
263cnfldtopon 22586 . . . . . . . . . . . . 13  |-  J  e.  (TopOn `  CC )
2726a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  J  e.  (TopOn `  CC ) )
28 unitssre 12319 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  C_  RR
29 ax-resscn 9993 . . . . . . . . . . . . . 14  |-  RR  C_  CC
3028, 29sstri 3612 . . . . . . . . . . . . 13  |-  ( 0 [,] 1 )  C_  CC
3130a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( 0 [,] 1
)  C_  CC )
3227, 27cnmpt2nd 21472 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  CC ,  t  e.  CC  |->  t )  e.  ( ( J  tX  J
)  Cn  J ) )
3325, 27, 31, 25, 27, 31, 32cnmpt2res 21480 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  t )  e.  ( ( II  tX  II )  Cn  J ) )
341adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  S  C_  CC )
35 resttopon 20965 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  ( Jt  S )  e.  (TopOn `  S ) )
3626, 1, 35sylancr 695 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( Jt  S )  e.  (TopOn `  S ) )
374, 36syl5eqel 2705 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  (TopOn `  S ) )
38 toponuni 20719 . . . . . . . . . . . . . . . 16  |-  ( K  e.  (TopOn `  S
)  ->  S  =  U. K )
3937, 38syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  S  =  U. K
)
4039adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  S  =  U. K )
4118, 40eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( f `  0
)  e.  S )
4234, 41sseldd 3604 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( f `  0
)  e.  CC )
4324, 24, 27, 42cnmpt2c 21473 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( f `  0
) )  e.  ( ( II  tX  II )  Cn  J ) )
443mulcn 22670 . . . . . . . . . . . 12  |-  x.  e.  ( ( J  tX  J )  Cn  J
)
4544a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  x.  e.  ( ( J 
tX  J )  Cn  J ) )
4624, 24, 33, 43, 45cnmpt22f 21478 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( t  x.  (
f `  0 )
) )  e.  ( ( II  tX  II )  Cn  J ) )
47 ax-1cn 9994 . . . . . . . . . . . . . . 15  |-  1  e.  CC
4847a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
1  e.  CC )
4927, 27, 27, 48cnmpt2c 21473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  CC ,  t  e.  CC  |->  1 )  e.  ( ( J  tX  J
)  Cn  J ) )
503subcn 22669 . . . . . . . . . . . . . 14  |-  -  e.  ( ( J  tX  J )  Cn  J
)
5150a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  -  e.  ( ( J  tX  J )  Cn  J ) )
5227, 27, 49, 32, 51cnmpt22f 21478 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  CC ,  t  e.  CC  |->  ( 1  -  t
) )  e.  ( ( J  tX  J
)  Cn  J ) )
5325, 27, 31, 25, 27, 31, 52cnmpt2res 21480 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( 1  -  t
) )  e.  ( ( II  tX  II )  Cn  J ) )
5424, 24cnmpt1st 21471 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  z )  e.  ( ( II  tX  II )  Cn  II ) )
553cnfldtop 22587 . . . . . . . . . . . . . 14  |-  J  e. 
Top
56 cnrest2r 21091 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
II  Cn  ( Jt  S
) )  C_  (
II  Cn  J )
)
5755, 56ax-mp 5 . . . . . . . . . . . . 13  |-  ( II 
Cn  ( Jt  S ) )  C_  ( II  Cn  J )
584oveq2i 6661 . . . . . . . . . . . . . 14  |-  ( II 
Cn  K )  =  ( II  Cn  ( Jt  S ) )
596, 58syl6eleq 2711 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f  e.  ( II 
Cn  ( Jt  S ) ) )
6057, 59sseldi 3601 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f  e.  ( II 
Cn  J ) )
6124, 24, 54, 60cnmpt21f 21475 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( f `  z
) )  e.  ( ( II  tX  II )  Cn  J ) )
6224, 24, 53, 61, 45cnmpt22f 21478 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( 1  -  t )  x.  (
f `  z )
) )  e.  ( ( II  tX  II )  Cn  J ) )
633addcn 22668 . . . . . . . . . . 11  |-  +  e.  ( ( J  tX  J )  Cn  J
)
6463a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  +  e.  ( ( J  tX  J )  Cn  J ) )
6524, 24, 46, 62, 64cnmpt22f 21478 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
6641adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( f `  0
)  e.  S )
6715adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
f : ( 0 [,] 1 ) --> U. K )
68 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
z  e.  ( 0 [,] 1 ) )
6967, 68ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( f `  z
)  e.  U. K
)
7040adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  ->  S  =  U. K )
7169, 70eleqtrrd 2704 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( f `  z
)  e.  S )
7223exp2 1285 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  S  ->  ( y  e.  S  ->  ( t  e.  ( 0 [,] 1 )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  S
) ) ) )
7372imp42 620 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  e.  S  /\  y  e.  S )
)  /\  t  e.  ( 0 [,] 1
) )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  S )
7473an32s 846 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( 0 [,] 1
) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  S )
7574ralrimivva 2971 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  t  e.  ( 0 [,] 1
) )  ->  A. x  e.  S  A. y  e.  S  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  S )
7675ad2ant2rl 785 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  ->  A. x  e.  S  A. y  e.  S  ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  S )
77 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( f ` 
0 )  ->  (
t  x.  x )  =  ( t  x.  ( f `  0
) ) )
7877oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( f ` 
0 )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  y
) ) )
7978eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( x  =  ( f ` 
0 )  ->  (
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  S  <->  ( (
t  x.  ( f `
 0 ) )  +  ( ( 1  -  t )  x.  y ) )  e.  S ) )
80 oveq2 6658 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( f `  z )  ->  (
( 1  -  t
)  x.  y )  =  ( ( 1  -  t )  x.  ( f `  z
) ) )
8180oveq2d 6666 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( f `  z )  ->  (
( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )
8281eleq1d 2686 . . . . . . . . . . . . . . 15  |-  ( y  =  ( f `  z )  ->  (
( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  y ) )  e.  S  <->  ( (
t  x.  ( f `
 0 ) )  +  ( ( 1  -  t )  x.  ( f `  z
) ) )  e.  S ) )
8379, 82rspc2va 3323 . . . . . . . . . . . . . 14  |-  ( ( ( ( f ` 
0 )  e.  S  /\  ( f `  z
)  e.  S )  /\  A. x  e.  S  A. y  e.  S  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  S
)  ->  ( (
t  x.  ( f `
 0 ) )  +  ( ( 1  -  t )  x.  ( f `  z
) ) )  e.  S )
8466, 71, 76, 83syl21anc 1325 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  ( z  e.  ( 0 [,] 1 )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) )  e.  S )
8584ralrimivva 2971 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  A. z  e.  (
0 [,] 1 ) A. t  e.  ( 0 [,] 1 ) ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) )  e.  S )
86 eqid 2622 . . . . . . . . . . . . 13  |-  ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  ( f `
 0 ) )  +  ( ( 1  -  t )  x.  ( f `  z
) ) ) )  =  ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )
8786fmpt2 7237 . . . . . . . . . . . 12  |-  ( A. z  e.  ( 0 [,] 1 ) A. t  e.  ( 0 [,] 1 ) ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) )  e.  S  <->  ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) : ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) --> S )
8885, 87sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) ) : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> S )
89 frn 6053 . . . . . . . . . . 11  |-  ( ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) ) : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> S  ->  ran  ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )  C_  S )
9088, 89syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  ->  ran  ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) )  C_  S
)
91 cnrest2 21090 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  CC )  /\  ran  (
z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) )  C_  S  /\  S  C_  CC )  -> 
( ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )  e.  ( ( II  tX  II )  Cn  J
)  <->  ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )  e.  ( ( II  tX  II )  Cn  ( Jt  S ) ) ) )
9227, 90, 34, 91syl3anc 1326 . . . . . . . . 9  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )  e.  ( ( II  tX  II )  Cn  J
)  <->  ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) )  e.  ( ( II  tX  II )  Cn  ( Jt  S ) ) ) )
9365, 92mpbid 222 . . . . . . . 8  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) )  e.  ( ( II  tX  II )  Cn  ( Jt  S ) ) )
944oveq2i 6661 . . . . . . . 8  |-  ( ( II  tX  II )  Cn  K )  =  ( ( II  tX  II )  Cn  ( Jt  S ) )
9593, 94syl6eleqr 2712 . . . . . . 7  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) )  e.  ( ( II  tX  II )  Cn  K ) )
96 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
97 simpr 477 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  0 )  ->  t  =  0 )
9897oveq1d 6665 . . . . . . . . . . 11  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( t  x.  ( f `  0
) )  =  ( 0  x.  ( f `
 0 ) ) )
9997oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( 1  -  t )  =  ( 1  -  0 ) )
100 1m0e1 11131 . . . . . . . . . . . . 13  |-  ( 1  -  0 )  =  1
10199, 100syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( 1  -  t )  =  1 )
102 simpl 473 . . . . . . . . . . . . 13  |-  ( ( z  =  s  /\  t  =  0 )  ->  z  =  s )
103102fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( f `  z )  =  ( f `  s ) )
104101, 103oveq12d 6668 . . . . . . . . . . 11  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( f `  z
) )  =  ( 1  x.  ( f `
 s ) ) )
10598, 104oveq12d 6668 . . . . . . . . . 10  |-  ( ( z  =  s  /\  t  =  0 )  ->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) )  =  ( ( 0  x.  (
f `  0 )
)  +  ( 1  x.  ( f `  s ) ) ) )
106 ovex 6678 . . . . . . . . . 10  |-  ( ( 0  x.  ( f `
 0 ) )  +  ( 1  x.  ( f `  s
) ) )  e. 
_V
107105, 86, 106ovmpt2a 6791 . . . . . . . . 9  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) ) 0 )  =  ( ( 0  x.  ( f `  0
) )  +  ( 1  x.  ( f `
 s ) ) ) )
10896, 16, 107sylancl 694 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) 0 )  =  ( ( 0  x.  ( f `
 0 ) )  +  ( 1  x.  ( f `  s
) ) ) )
10942adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
f `  0 )  e.  CC )
110109mul02d 10234 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  ( f `
 0 ) )  =  0 )
11126toponunii 20721 . . . . . . . . . . . . 13  |-  CC  =  U. J
11213, 111cnf 21050 . . . . . . . . . . . 12  |-  ( f  e.  ( II  Cn  J )  ->  f : ( 0 [,] 1 ) --> CC )
11360, 112syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f : ( 0 [,] 1 ) --> CC )
114113ffvelrnda 6359 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
f `  s )  e.  CC )
115114mulid2d 10058 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  ( f `
 s ) )  =  ( f `  s ) )
116110, 115oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  (
f `  0 )
)  +  ( 1  x.  ( f `  s ) ) )  =  ( 0  +  ( f `  s
) ) )
117114addid2d 10237 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  +  ( f `
 s ) )  =  ( f `  s ) )
118108, 116, 1173eqtrd 2660 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) 0 )  =  ( f `
 s ) )
119 1elunit 12291 . . . . . . . . 9  |-  1  e.  ( 0 [,] 1
)
120 simpr 477 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  1 )  ->  t  =  1 )
121120oveq1d 6665 . . . . . . . . . . 11  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( t  x.  ( f `  0
) )  =  ( 1  x.  ( f `
 0 ) ) )
122120oveq2d 6666 . . . . . . . . . . . . 13  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( 1  -  t )  =  ( 1  -  1 ) )
123 1m1e0 11089 . . . . . . . . . . . . 13  |-  ( 1  -  1 )  =  0
124122, 123syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( 1  -  t )  =  0 )
125 simpl 473 . . . . . . . . . . . . 13  |-  ( ( z  =  s  /\  t  =  1 )  ->  z  =  s )
126125fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( f `  z )  =  ( f `  s ) )
127124, 126oveq12d 6668 . . . . . . . . . . 11  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( f `  z
) )  =  ( 0  x.  ( f `
 s ) ) )
128121, 127oveq12d 6668 . . . . . . . . . 10  |-  ( ( z  =  s  /\  t  =  1 )  ->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) )  =  ( ( 1  x.  (
f `  0 )
)  +  ( 0  x.  ( f `  s ) ) ) )
129 ovex 6678 . . . . . . . . . 10  |-  ( ( 1  x.  ( f `
 0 ) )  +  ( 0  x.  ( f `  s
) ) )  e. 
_V
130128, 86, 129ovmpt2a 6791 . . . . . . . . 9  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) ) 1 )  =  ( ( 1  x.  ( f `  0
) )  +  ( 0  x.  ( f `
 s ) ) ) )
13196, 119, 130sylancl 694 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) 1 )  =  ( ( 1  x.  ( f `
 0 ) )  +  ( 0  x.  ( f `  s
) ) ) )
132109mulid2d 10058 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  ( f `
 0 ) )  =  ( f ` 
0 ) )
133114mul02d 10234 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  ( f `
 s ) )  =  0 )
134132, 133oveq12d 6668 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  (
f `  0 )
)  +  ( 0  x.  ( f `  s ) ) )  =  ( ( f `
 0 )  +  0 ) )
135109addid1d 10236 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( f `  0
)  +  0 )  =  ( f ` 
0 ) )
136 fvex 6201 . . . . . . . . . . 11  |-  ( f `
 0 )  e. 
_V
137136fvconst2 6469 . . . . . . . . . 10  |-  ( s  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) `  s )  =  ( f `  0 ) )
138137adantl 482 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) `  s )  =  ( f `  0 ) )
139135, 138eqtr4d 2659 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( f `  0
)  +  0 )  =  ( ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) `  s ) )
140131, 134, 1393eqtrd 2660 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) 1 )  =  ( ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) `  s
) )
141 simpr 477 . . . . . . . . . . . 12  |-  ( ( z  =  0  /\  t  =  s )  ->  t  =  s )
142141oveq1d 6665 . . . . . . . . . . 11  |-  ( ( z  =  0  /\  t  =  s )  ->  ( t  x.  ( f `  0
) )  =  ( s  x.  ( f `
 0 ) ) )
143141oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( z  =  0  /\  t  =  s )  ->  ( 1  -  t )  =  ( 1  -  s ) )
144 simpl 473 . . . . . . . . . . . . 13  |-  ( ( z  =  0  /\  t  =  s )  ->  z  =  0 )
145144fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( z  =  0  /\  t  =  s )  ->  ( f `  z )  =  ( f `  0 ) )
146143, 145oveq12d 6668 . . . . . . . . . . 11  |-  ( ( z  =  0  /\  t  =  s )  ->  ( ( 1  -  t )  x.  ( f `  z
) )  =  ( ( 1  -  s
)  x.  ( f `
 0 ) ) )
147142, 146oveq12d 6668 . . . . . . . . . 10  |-  ( ( z  =  0  /\  t  =  s )  ->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) )  =  ( ( s  x.  (
f `  0 )
)  +  ( ( 1  -  s )  x.  ( f ` 
0 ) ) ) )
148 ovex 6678 . . . . . . . . . 10  |-  ( ( s  x.  ( f `
 0 ) )  +  ( ( 1  -  s )  x.  ( f `  0
) ) )  e. 
_V
149147, 86, 148ovmpt2a 6791 . . . . . . . . 9  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) ) s )  =  ( ( s  x.  ( f `  0
) )  +  ( ( 1  -  s
)  x.  ( f `
 0 ) ) ) )
15016, 96, 149sylancr 695 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) s )  =  ( ( s  x.  ( f `
 0 ) )  +  ( ( 1  -  s )  x.  ( f `  0
) ) ) )
15130, 96sseldi 3601 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  CC )
152 pncan3 10289 . . . . . . . . . . 11  |-  ( ( s  e.  CC  /\  1  e.  CC )  ->  ( s  +  ( 1  -  s ) )  =  1 )
153151, 47, 152sylancl 694 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  +  ( 1  -  s ) )  =  1 )
154153oveq1d 6665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s  +  ( 1  -  s ) )  x.  ( f `
 0 ) )  =  ( 1  x.  ( f `  0
) ) )
155 subcl 10280 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
15647, 151, 155sylancr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  -  s )  e.  CC )
157151, 156, 109adddird 10065 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s  +  ( 1  -  s ) )  x.  ( f `
 0 ) )  =  ( ( s  x.  ( f ` 
0 ) )  +  ( ( 1  -  s )  x.  (
f `  0 )
) ) )
158154, 157, 1323eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s  x.  (
f `  0 )
)  +  ( ( 1  -  s )  x.  ( f ` 
0 ) ) )  =  ( f ` 
0 ) )
159150, 158eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) s )  =  ( f `
 0 ) )
160 simpr 477 . . . . . . . . . . . 12  |-  ( ( z  =  1  /\  t  =  s )  ->  t  =  s )
161160oveq1d 6665 . . . . . . . . . . 11  |-  ( ( z  =  1  /\  t  =  s )  ->  ( t  x.  ( f `  0
) )  =  ( s  x.  ( f `
 0 ) ) )
162160oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( z  =  1  /\  t  =  s )  ->  ( 1  -  t )  =  ( 1  -  s ) )
163 simpl 473 . . . . . . . . . . . . 13  |-  ( ( z  =  1  /\  t  =  s )  ->  z  =  1 )
164163fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( z  =  1  /\  t  =  s )  ->  ( f `  z )  =  ( f `  1 ) )
165162, 164oveq12d 6668 . . . . . . . . . . 11  |-  ( ( z  =  1  /\  t  =  s )  ->  ( ( 1  -  t )  x.  ( f `  z
) )  =  ( ( 1  -  s
)  x.  ( f `
 1 ) ) )
166161, 165oveq12d 6668 . . . . . . . . . 10  |-  ( ( z  =  1  /\  t  =  s )  ->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) )  =  ( ( s  x.  (
f `  0 )
)  +  ( ( 1  -  s )  x.  ( f ` 
1 ) ) ) )
167 ovex 6678 . . . . . . . . . 10  |-  ( ( s  x.  ( f `
 0 ) )  +  ( ( 1  -  s )  x.  ( f `  1
) ) )  e. 
_V
168166, 86, 167ovmpt2a 6791 . . . . . . . . 9  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) ) s )  =  ( ( s  x.  ( f `  0
) )  +  ( ( 1  -  s
)  x.  ( f `
 1 ) ) ) )
169119, 96, 168sylancr 695 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) s )  =  ( ( s  x.  ( f `
 0 ) )  +  ( ( 1  -  s )  x.  ( f `  1
) ) ) )
170 simplrr 801 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
f `  0 )  =  ( f ` 
1 ) )
171170oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( f `
 0 ) )  =  ( ( 1  -  s )  x.  ( f `  1
) ) )
172171oveq2d 6666 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s  x.  (
f `  0 )
)  +  ( ( 1  -  s )  x.  ( f ` 
0 ) ) )  =  ( ( s  x.  ( f ` 
0 ) )  +  ( ( 1  -  s )  x.  (
f `  1 )
) ) )
173158, 172, 1703eqtr3d 2664 . . . . . . . 8  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s  x.  (
f `  0 )
)  +  ( ( 1  -  s )  x.  ( f ` 
1 ) ) )  =  ( f ` 
1 ) )
174169, 173eqtrd 2656 . . . . . . 7  |-  ( ( ( ph  /\  (
f  e.  ( II 
Cn  K )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( z  e.  ( 0 [,] 1
) ,  t  e.  ( 0 [,] 1
)  |->  ( ( t  x.  ( f ` 
0 ) )  +  ( ( 1  -  t )  x.  (
f `  z )
) ) ) s )  =  ( f `
 1 ) )
1756, 22, 95, 118, 140, 159, 174isphtpy2d 22786 . . . . . 6  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( ( t  x.  ( f `  0
) )  +  ( ( 1  -  t
)  x.  ( f `
 z ) ) ) )  e.  ( f ( PHtpy `  K
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) )
176 ne0i 3921 . . . . . 6  |-  ( ( z  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( t  x.  (
f `  0 )
)  +  ( ( 1  -  t )  x.  ( f `  z ) ) ) )  e.  ( f ( PHtpy `  K )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) )  ->  ( f (
PHtpy `  K ) ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) )  =/=  (/) )
177175, 176syl 17 . . . . 5  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
( f ( PHtpy `  K ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )  =/=  (/) )
178 isphtpc 22793 . . . . 5  |-  ( f (  ~=ph  `  K ) ( ( 0 [,] 1 )  X.  {
( f `  0
) } )  <->  ( f  e.  ( II  Cn  K
)  /\  ( (
0 [,] 1 )  X.  { ( f `
 0 ) } )  e.  ( II 
Cn  K )  /\  ( f ( PHtpy `  K ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )  =/=  (/) ) )
1796, 22, 177, 178syl3anbrc 1246 . . . 4  |-  ( (
ph  /\  ( f  e.  ( II  Cn  K
)  /\  ( f `  0 )  =  ( f `  1
) ) )  -> 
f (  ~=ph  `  K
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) )
180179expr 643 . . 3  |-  ( (
ph  /\  f  e.  ( II  Cn  K
) )  ->  (
( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  K
) ( ( 0 [,] 1 )  X. 
{ ( f ` 
0 ) } ) ) )
181180ralrimiva 2966 . 2  |-  ( ph  ->  A. f  e.  ( II  Cn  K ) ( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  K ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) )
182 issconn 31208 . 2  |-  ( K  e. SConn 
<->  ( K  e. PConn  /\  A. f  e.  ( II  Cn  K ) ( ( f `  0 )  =  ( f ` 
1 )  ->  f
(  ~=ph  `  K )
( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ) ) )
1835, 181, 182sylanbrc 698 1  |-  ( ph  ->  K  e. SConn )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   IIcii 22678   PHtpycphtpy 22767    ~=ph cphtpc 22768  PConncpconn 31201  SConncsconn 31202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204
This theorem is referenced by:  blsconn  31226  resconn  31228
  Copyright terms: Public domain W3C validator