MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Structured version   Visualization version   Unicode version

Theorem pcohtpylem 22819
Description: Lemma for pcohtpy 22820. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
pcohtpy.5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
pcohtpy.6  |-  ( ph  ->  G (  ~=ph  `  J
) K )
pcohtpylem.7  |-  P  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )
pcohtpylem.8  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
pcohtpylem.9  |-  ( ph  ->  N  e.  ( G ( PHtpy `  J ) K ) )
Assertion
Ref Expression
pcohtpylem  |-  ( ph  ->  P  e.  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) ) )
Distinct variable groups:    x, y, F    x, M, y    x, N, y    ph, x, y   
x, G, y    x, H, y    x, J, y   
x, K, y
Allowed substitution hints:    P( x, y)

Proof of Theorem pcohtpylem
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
2 isphtpc 22793 . . . . 5  |-  ( F (  ~=ph  `  J ) H  <->  ( F  e.  ( II  Cn  J
)  /\  H  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) H )  =/=  (/) ) )
31, 2sylib 208 . . . 4  |-  ( ph  ->  ( F  e.  ( II  Cn  J )  /\  H  e.  ( II  Cn  J )  /\  ( F (
PHtpy `  J ) H )  =/=  (/) ) )
43simp1d 1073 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
5 pcohtpy.6 . . . . 5  |-  ( ph  ->  G (  ~=ph  `  J
) K )
6 isphtpc 22793 . . . . 5  |-  ( G (  ~=ph  `  J ) K  <->  ( G  e.  ( II  Cn  J
)  /\  K  e.  ( II  Cn  J
)  /\  ( G
( PHtpy `  J ) K )  =/=  (/) ) )
75, 6sylib 208 . . . 4  |-  ( ph  ->  ( G  e.  ( II  Cn  J )  /\  K  e.  ( II  Cn  J )  /\  ( G (
PHtpy `  J ) K )  =/=  (/) ) )
87simp1d 1073 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
9 pcohtpy.4 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
104, 8, 9pcocn 22817 . 2  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
113simp2d 1074 . . 3  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
127simp2d 1074 . . 3  |-  ( ph  ->  K  e.  ( II 
Cn  J ) )
13 pcohtpylem.8 . . . . . 6  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
144, 11, 13phtpy01 22784 . . . . 5  |-  ( ph  ->  ( ( F ` 
0 )  =  ( H `  0 )  /\  ( F ` 
1 )  =  ( H `  1 ) ) )
1514simprd 479 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( H `
 1 ) )
16 pcohtpylem.9 . . . . . 6  |-  ( ph  ->  N  e.  ( G ( PHtpy `  J ) K ) )
178, 12, 16phtpy01 22784 . . . . 5  |-  ( ph  ->  ( ( G ` 
0 )  =  ( K `  0 )  /\  ( G ` 
1 )  =  ( K `  1 ) ) )
1817simpld 475 . . . 4  |-  ( ph  ->  ( G `  0
)  =  ( K `
 0 ) )
199, 15, 183eqtr3d 2664 . . 3  |-  ( ph  ->  ( H `  1
)  =  ( K `
 0 ) )
2011, 12, 19pcocn 22817 . 2  |-  ( ph  ->  ( H ( *p
`  J ) K )  e.  ( II 
Cn  J ) )
21 pcohtpylem.7 . . 3  |-  P  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )
22 eqid 2622 . . . 4  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
23 eqid 2622 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
24 eqid 2622 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
25 dfii2 22685 . . . 4  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
26 0red 10041 . . . 4  |-  ( ph  ->  0  e.  RR )
27 1red 10055 . . . 4  |-  ( ph  ->  1  e.  RR )
28 halfre 11246 . . . . . 6  |-  ( 1  /  2 )  e.  RR
29 0re 10040 . . . . . . 7  |-  0  e.  RR
30 halfgt0 11248 . . . . . . 7  |-  0  <  ( 1  /  2
)
3129, 28, 30ltleii 10160 . . . . . 6  |-  0  <_  ( 1  /  2
)
32 1re 10039 . . . . . . 7  |-  1  e.  RR
33 halflt1 11250 . . . . . . 7  |-  ( 1  /  2 )  <  1
3428, 32, 33ltleii 10160 . . . . . 6  |-  ( 1  /  2 )  <_ 
1
3529, 32elicc2i 12239 . . . . . 6  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
3628, 31, 34, 35mpbir3an 1244 . . . . 5  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
3736a1i 11 . . . 4  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
38 iitopon 22682 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3938a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
409adantr 481 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F `  1
)  =  ( G `
 0 ) )
414, 11, 13phtpyi 22783 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
( 0 M y )  =  ( F `
 0 )  /\  ( 1 M y )  =  ( F `
 1 ) ) )
4241simprd 479 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
1 M y )  =  ( F ` 
1 ) )
4342adantrl 752 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 1 M y )  =  ( F `
 1 ) )
448, 12, 16phtpyi 22783 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
( 0 N y )  =  ( G `
 0 )  /\  ( 1 N y )  =  ( G `
 1 ) ) )
4544simpld 475 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
0 N y )  =  ( G ` 
0 ) )
4645adantrl 752 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 0 N y )  =  ( G `
 0 ) )
4740, 43, 463eqtr4d 2666 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 1 M y )  =  ( 0 N y ) )
48 simprl 794 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  ->  x  =  ( 1  /  2 ) )
4948oveq2d 6666 . . . . . . 7  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  x
)  =  ( 2  x.  ( 1  / 
2 ) ) )
50 2cn 11091 . . . . . . . 8  |-  2  e.  CC
51 2ne0 11113 . . . . . . . 8  |-  2  =/=  0
5250, 51recidi 10756 . . . . . . 7  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
5349, 52syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  x
)  =  1 )
5453oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x ) M y )  =  ( 1 M y ) )
5553oveq1d 6665 . . . . . . 7  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x )  -  1 )  =  ( 1  -  1 ) )
56 1m1e0 11089 . . . . . . 7  |-  ( 1  -  1 )  =  0
5755, 56syl6eq 2672 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x )  -  1 )  =  0 )
5857oveq1d 6665 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 2  x.  x )  - 
1 ) N y )  =  ( 0 N y ) )
5947, 54, 583eqtr4d 2666 . . . 4  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x ) M y )  =  ( ( ( 2  x.  x
)  -  1 ) N y ) )
60 retopon 22567 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
61 iccssre 12255 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
6229, 28, 61mp2an 708 . . . . . . 7  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
63 resttopon 20965 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6460, 62, 63mp2an 708 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
6564a1i 11 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6665, 39cnmpt1st 21471 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
6723iihalf1cn 22731 . . . . . . 7  |-  ( z  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  z ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
6867a1i 11 . . . . . 6  |-  ( ph  ->  ( z  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  z
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
69 oveq2 6658 . . . . . 6  |-  ( z  =  x  ->  (
2  x.  z )  =  ( 2  x.  x ) )
7065, 39, 66, 65, 68, 69cnmpt21 21474 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 2  x.  x
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
7165, 39cnmpt2nd 21472 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
724, 11phtpycn 22782 . . . . . 6  |-  ( ph  ->  ( F ( PHtpy `  J ) H ) 
C_  ( ( II 
tX  II )  Cn  J ) )
7372, 13sseldd 3604 . . . . 5  |-  ( ph  ->  M  e.  ( ( II  tX  II )  Cn  J ) )
7465, 39, 70, 71, 73cnmpt22f 21478 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  x ) M y ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  J
) )
75 iccssre 12255 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
7628, 32, 75mp2an 708 . . . . . . 7  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
77 resttopon 20965 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
7860, 76, 77mp2an 708 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
7978a1i 11 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8079, 39cnmpt1st 21471 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
8124iihalf2cn 22733 . . . . . . 7  |-  ( z  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
8281a1i 11 . . . . . 6  |-  ( ph  ->  ( z  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
8369oveq1d 6665 . . . . . 6  |-  ( z  =  x  ->  (
( 2  x.  z
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
8479, 39, 80, 79, 82, 83cnmpt21 21474 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
8579, 39cnmpt2nd 21472 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
868, 12phtpycn 22782 . . . . . 6  |-  ( ph  ->  ( G ( PHtpy `  J ) K ) 
C_  ( ( II 
tX  II )  Cn  J ) )
8786, 16sseldd 3604 . . . . 5  |-  ( ph  ->  N  e.  ( ( II  tX  II )  Cn  J ) )
8879, 39, 84, 85, 87cnmpt22f 21478 . . . 4  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 2  x.  x )  - 
1 ) N y ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  J
) )
8922, 23, 24, 25, 26, 27, 37, 39, 59, 74, 88cnmpt2pc 22727 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )  e.  ( ( II  tX  II )  Cn  J
) )
9021, 89syl5eqel 2705 . 2  |-  ( ph  ->  P  e.  ( ( II  tX  II )  Cn  J ) )
91 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  ph )
92 elii1 22734 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  <->  ( s  e.  ( 0 [,] 1
)  /\  s  <_  ( 1  /  2 ) ) )
93 iihalf1 22730 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
9492, 93sylbir 225 . . . . . . . 8  |-  ( ( s  e.  ( 0 [,] 1 )  /\  s  <_  ( 1  / 
2 ) )  -> 
( 2  x.  s
)  e.  ( 0 [,] 1 ) )
9594adantll 750 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
964, 11phtpyhtpy 22781 . . . . . . . . 9  |-  ( ph  ->  ( F ( PHtpy `  J ) H ) 
C_  ( F ( II Htpy  J ) H ) )
9796, 13sseldd 3604 . . . . . . . 8  |-  ( ph  ->  M  e.  ( F ( II Htpy  J ) H ) )
9839, 4, 11, 97htpyi 22773 . . . . . . 7  |-  ( (
ph  /\  ( 2  x.  s )  e.  ( 0 [,] 1
) )  ->  (
( ( 2  x.  s ) M 0 )  =  ( F `
 ( 2  x.  s ) )  /\  ( ( 2  x.  s ) M 1 )  =  ( H `
 ( 2  x.  s ) ) ) )
9991, 95, 98syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( ( 2  x.  s ) M 0 )  =  ( F `
 ( 2  x.  s ) )  /\  ( ( 2  x.  s ) M 1 )  =  ( H `
 ( 2  x.  s ) ) ) )
10099simpld 475 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( 2  x.  s
) M 0 )  =  ( F `  ( 2  x.  s
) ) )
101 iftrue 4092 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( 2  x.  s ) M 0 ) )
102101adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( 2  x.  s ) M 0 ) )
103 iftrue 4092 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 ( 2  x.  s ) ) )
104103adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 ( 2  x.  s ) ) )
105100, 102, 1043eqtr4d 2666 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
106 simpll 790 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  ph )
107 elii2 22735 . . . . . . . . 9  |-  ( ( s  e.  ( 0 [,] 1 )  /\  -.  s  <_  ( 1  /  2 ) )  ->  s  e.  ( ( 1  /  2
) [,] 1 ) )
108107adantll 750 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
s  e.  ( ( 1  /  2 ) [,] 1 ) )
109 iihalf2 22732 . . . . . . . 8  |-  ( s  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  s
)  -  1 )  e.  ( 0 [,] 1 ) )
110108, 109syl 17 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( 2  x.  s )  -  1 )  e.  ( 0 [,] 1 ) )
1118, 12phtpyhtpy 22781 . . . . . . . . 9  |-  ( ph  ->  ( G ( PHtpy `  J ) K ) 
C_  ( G ( II Htpy  J ) K ) )
112111, 16sseldd 3604 . . . . . . . 8  |-  ( ph  ->  N  e.  ( G ( II Htpy  J ) K ) )
11339, 8, 12, 112htpyi 22773 . . . . . . 7  |-  ( (
ph  /\  ( (
2  x.  s )  -  1 )  e.  ( 0 [,] 1
) )  ->  (
( ( ( 2  x.  s )  - 
1 ) N 0 )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) )  /\  ( ( ( 2  x.  s )  - 
1 ) N 1 )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
114106, 110, 113syl2anc 693 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( ( 2  x.  s )  -  1 ) N 0 )  =  ( G `  ( ( 2  x.  s )  -  1 ) )  /\  ( ( ( 2  x.  s )  -  1 ) N 1 )  =  ( K `  ( ( 2  x.  s )  -  1 ) ) ) )
115114simpld 475 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( 2  x.  s )  - 
1 ) N 0 )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
116 iffalse 4095 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )
117116adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )
118 iffalse 4095 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
119118adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
120115, 117, 1193eqtr4d 2666 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
121105, 120pm2.61dan 832 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
122 simpr 477 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
123 0elunit 12290 . . . 4  |-  0  e.  ( 0 [,] 1
)
124 simpl 473 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
125124breq1d 4663 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
126124oveq2d 6666 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  x )  =  ( 2  x.  s ) )
127 simpr 477 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
128126, 127oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 2  x.  x ) M y )  =  ( ( 2  x.  s
) M 0 ) )
129126oveq1d 6665 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 2  x.  x )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
130129, 127oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( ( ( 2  x.  s )  -  1 ) N 0 ) )
131125, 128, 130ifbieq12d 4113 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  - 
1 ) N 0 ) ) )
132 ovex 6678 . . . . . 6  |-  ( ( 2  x.  s ) M 0 )  e. 
_V
133 ovex 6678 . . . . . 6  |-  ( ( ( 2  x.  s
)  -  1 ) N 0 )  e. 
_V
134132, 133ifex 4156 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )  e.  _V
135131, 21, 134ovmpt2a 6791 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s P 0 )  =  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) ) )
136122, 123, 135sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 0 )  =  if ( s  <_  ( 1  / 
2 ) ,  ( ( 2  x.  s
) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) ) )
1374, 8pcovalg 22812 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  s ) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) ) )
138121, 136, 1373eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 0 )  =  ( ( F ( *p `  J
) G ) `  s ) )
13999simprd 479 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( 2  x.  s
) M 1 )  =  ( H `  ( 2  x.  s
) ) )
140 iftrue 4092 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( 2  x.  s ) M 1 ) )
141140adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( 2  x.  s ) M 1 ) )
142 iftrue 4092 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( H `
 ( 2  x.  s ) ) )
143142adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( H `
 ( 2  x.  s ) ) )
144139, 141, 1433eqtr4d 2666 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
145114simprd 479 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( 2  x.  s )  - 
1 ) N 1 )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
146 iffalse 4095 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )
147146adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )
148 iffalse 4095 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
149148adantl 482 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
150145, 147, 1493eqtr4d 2666 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
151144, 150pm2.61dan 832 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
152 1elunit 12291 . . . 4  |-  1  e.  ( 0 [,] 1
)
153 simpl 473 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
154153breq1d 4663 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
155153oveq2d 6666 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  x )  =  ( 2  x.  s ) )
156 simpr 477 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
157155, 156oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  x ) M y )  =  ( ( 2  x.  s
) M 1 ) )
158155oveq1d 6665 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  x )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
159158, 156oveq12d 6668 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( ( ( 2  x.  s )  -  1 ) N 1 ) )
160154, 157, 159ifbieq12d 4113 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  - 
1 ) N 1 ) ) )
161 ovex 6678 . . . . . 6  |-  ( ( 2  x.  s ) M 1 )  e. 
_V
162 ovex 6678 . . . . . 6  |-  ( ( ( 2  x.  s
)  -  1 ) N 1 )  e. 
_V
163161, 162ifex 4156 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )  e.  _V
164160, 21, 163ovmpt2a 6791 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s P 1 )  =  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) ) )
165122, 152, 164sylancl 694 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 1 )  =  if ( s  <_  ( 1  / 
2 ) ,  ( ( 2  x.  s
) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) ) )
16611, 12pcovalg 22812 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( H ( *p
`  J ) K ) `  s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( H `  ( 2  x.  s ) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) ) )
167151, 165, 1663eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 1 )  =  ( ( H ( *p `  J
) K ) `  s ) )
1684, 11, 13phtpyi 22783 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 M s )  =  ( F `
 0 )  /\  ( 1 M s )  =  ( F `
 1 ) ) )
169168simpld 475 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 M s )  =  ( F ` 
0 ) )
170 simpl 473 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
171170, 31syl6eqbr 4692 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  x  <_  (
1  /  2 ) )
172171iftrued 4094 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( ( 2  x.  x ) M y ) )
173170oveq2d 6666 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 2  x.  x )  =  ( 2  x.  0 ) )
174 2t0e0 11183 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
175173, 174syl6eq 2672 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 2  x.  x )  =  0 )
176 simpr 477 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
177175, 176oveq12d 6668 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 2  x.  x ) M y )  =  ( 0 M s ) )
178172, 177eqtrd 2656 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( 0 M s ) )
179 ovex 6678 . . . . 5  |-  ( 0 M s )  e. 
_V
180178, 21, 179ovmpt2a 6791 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 P s )  =  ( 0 M s ) )
181123, 122, 180sylancr 695 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 P s )  =  ( 0 M s ) )
1824, 8pco0 22814 . . . 4  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  0
)  =  ( F `
 0 ) )
183182adantr 481 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  0 )  =  ( F ` 
0 ) )
184169, 181, 1833eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 P s )  =  ( ( F ( *p `  J
) G ) ` 
0 ) )
1858, 12, 16phtpyi 22783 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 N s )  =  ( G `
 0 )  /\  ( 1 N s )  =  ( G `
 1 ) ) )
186185simprd 479 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 N s )  =  ( G ` 
1 ) )
18728, 32ltnlei 10158 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
18833, 187mpbi 220 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
189 simpl 473 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
190189breq1d 4663 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
191188, 190mtbiri 317 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  -.  x  <_  ( 1  /  2 ) )
192191iffalsed 4097 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( ( ( 2  x.  x )  - 
1 ) N y ) )
193189oveq2d 6666 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 2  x.  x )  =  ( 2  x.  1 ) )
194 2t1e2 11176 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
195193, 194syl6eq 2672 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 2  x.  x )  =  2 )
196195oveq1d 6665 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 2  x.  x )  - 
1 )  =  ( 2  -  1 ) )
197 2m1e1 11135 . . . . . . . 8  |-  ( 2  -  1 )  =  1
198196, 197syl6eq 2672 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 2  x.  x )  - 
1 )  =  1 )
199 simpr 477 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
200198, 199oveq12d 6668 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( 1 N s ) )
201192, 200eqtrd 2656 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( 1 N s ) )
202 ovex 6678 . . . . 5  |-  ( 1 N s )  e. 
_V
203201, 21, 202ovmpt2a 6791 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 P s )  =  ( 1 N s ) )
204152, 122, 203sylancr 695 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 P s )  =  ( 1 N s ) )
2054, 8pco1 22815 . . . 4  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  1
)  =  ( G `
 1 ) )
206205adantr 481 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  1 )  =  ( G ` 
1 ) )
207186, 204, 2063eqtr4d 2666 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 P s )  =  ( ( F ( *p `  J
) G ) ` 
1 ) )
20810, 20, 90, 138, 167, 184, 207isphtpy2d 22786 1  |-  ( ph  ->  P  e.  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   RRcr 9935   0cc0 9936   1c1 9937    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   (,)cioo 12175   [,]cicc 12178   ↾t crest 16081   topGenctg 16098  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   IIcii 22678   Htpy chtpy 22766   PHtpycphtpy 22767    ~=ph cphtpc 22768   *pcpco 22800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805
This theorem is referenced by:  pcohtpy  22820
  Copyright terms: Public domain W3C validator