MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpy Structured version   Visualization version   Unicode version

Theorem pcohtpy 22820
Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
pcohtpy.5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
pcohtpy.6  |-  ( ph  ->  G (  ~=ph  `  J
) K )
Assertion
Ref Expression
pcohtpy  |-  ( ph  ->  ( F ( *p
`  J ) G ) (  ~=ph  `  J
) ( H ( *p `  J ) K ) )

Proof of Theorem pcohtpy
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
2 isphtpc 22793 . . . . 5  |-  ( F (  ~=ph  `  J ) H  <->  ( F  e.  ( II  Cn  J
)  /\  H  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) H )  =/=  (/) ) )
31, 2sylib 208 . . . 4  |-  ( ph  ->  ( F  e.  ( II  Cn  J )  /\  H  e.  ( II  Cn  J )  /\  ( F (
PHtpy `  J ) H )  =/=  (/) ) )
43simp1d 1073 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
5 pcohtpy.6 . . . . 5  |-  ( ph  ->  G (  ~=ph  `  J
) K )
6 isphtpc 22793 . . . . 5  |-  ( G (  ~=ph  `  J ) K  <->  ( G  e.  ( II  Cn  J
)  /\  K  e.  ( II  Cn  J
)  /\  ( G
( PHtpy `  J ) K )  =/=  (/) ) )
75, 6sylib 208 . . . 4  |-  ( ph  ->  ( G  e.  ( II  Cn  J )  /\  K  e.  ( II  Cn  J )  /\  ( G (
PHtpy `  J ) K )  =/=  (/) ) )
87simp1d 1073 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
9 pcohtpy.4 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
104, 8, 9pcocn 22817 . 2  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
113simp2d 1074 . . 3  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
127simp2d 1074 . . 3  |-  ( ph  ->  K  e.  ( II 
Cn  J ) )
13 phtpc01 22796 . . . . . 6  |-  ( F (  ~=ph  `  J ) H  ->  ( ( F `  0 )  =  ( H ` 
0 )  /\  ( F `  1 )  =  ( H ` 
1 ) ) )
141, 13syl 17 . . . . 5  |-  ( ph  ->  ( ( F ` 
0 )  =  ( H `  0 )  /\  ( F ` 
1 )  =  ( H `  1 ) ) )
1514simprd 479 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( H `
 1 ) )
16 phtpc01 22796 . . . . . 6  |-  ( G (  ~=ph  `  J ) K  ->  ( ( G `  0 )  =  ( K ` 
0 )  /\  ( G `  1 )  =  ( K ` 
1 ) ) )
175, 16syl 17 . . . . 5  |-  ( ph  ->  ( ( G ` 
0 )  =  ( K `  0 )  /\  ( G ` 
1 )  =  ( K `  1 ) ) )
1817simpld 475 . . . 4  |-  ( ph  ->  ( G `  0
)  =  ( K `
 0 ) )
199, 15, 183eqtr3d 2664 . . 3  |-  ( ph  ->  ( H `  1
)  =  ( K `
 0 ) )
2011, 12, 19pcocn 22817 . 2  |-  ( ph  ->  ( H ( *p
`  J ) K )  e.  ( II 
Cn  J ) )
213simp3d 1075 . . . . 5  |-  ( ph  ->  ( F ( PHtpy `  J ) H )  =/=  (/) )
22 n0 3931 . . . . 5  |-  ( ( F ( PHtpy `  J
) H )  =/=  (/) 
<->  E. m  m  e.  ( F ( PHtpy `  J ) H ) )
2321, 22sylib 208 . . . 4  |-  ( ph  ->  E. m  m  e.  ( F ( PHtpy `  J ) H ) )
247simp3d 1075 . . . . 5  |-  ( ph  ->  ( G ( PHtpy `  J ) K )  =/=  (/) )
25 n0 3931 . . . . 5  |-  ( ( G ( PHtpy `  J
) K )  =/=  (/) 
<->  E. n  n  e.  ( G ( PHtpy `  J ) K ) )
2624, 25sylib 208 . . . 4  |-  ( ph  ->  E. n  n  e.  ( G ( PHtpy `  J ) K ) )
27 eeanv 2182 . . . 4  |-  ( E. m E. n ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J ) K ) )  <->  ( E. m  m  e.  ( F
( PHtpy `  J ) H )  /\  E. n  n  e.  ( G ( PHtpy `  J
) K ) ) )
2823, 26, 27sylanbrc 698 . . 3  |-  ( ph  ->  E. m E. n
( m  e.  ( F ( PHtpy `  J
) H )  /\  n  e.  ( G
( PHtpy `  J ) K ) ) )
299adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  ( F `  1 )  =  ( G `  0
) )
301adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  F (  ~=ph  `  J ) H )
315adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  G (  ~=ph  `  J ) K )
32 eqid 2622 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( ( 2  x.  x ) m y ) ,  ( ( ( 2  x.  x
)  -  1 ) n y ) ) )  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( ( 2  x.  x ) m y ) ,  ( ( ( 2  x.  x
)  -  1 ) n y ) ) )
33 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  m  e.  ( F ( PHtpy `  J
) H ) )
34 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  n  e.  ( G ( PHtpy `  J
) K ) )
3529, 30, 31, 32, 33, 34pcohtpylem 22819 . . . . . 6  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) m y ) ,  ( ( ( 2  x.  x )  -  1 ) n y ) ) )  e.  ( ( F ( *p `  J
) G ) (
PHtpy `  J ) ( H ( *p `  J ) K ) ) )
36 ne0i 3921 . . . . . 6  |-  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( ( 2  x.  x ) m y ) ,  ( ( ( 2  x.  x )  -  1 ) n y ) ) )  e.  ( ( F ( *p
`  J ) G ) ( PHtpy `  J
) ( H ( *p `  J ) K ) )  -> 
( ( F ( *p `  J ) G ) ( PHtpy `  J ) ( H ( *p `  J
) K ) )  =/=  (/) )
3735, 36syl 17 . . . . 5  |-  ( (
ph  /\  ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) ) )  ->  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) )  =/=  (/) )
3837ex 450 . . . 4  |-  ( ph  ->  ( ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) )  ->  ( ( F ( *p `  J
) G ) (
PHtpy `  J ) ( H ( *p `  J ) K ) )  =/=  (/) ) )
3938exlimdvv 1862 . . 3  |-  ( ph  ->  ( E. m E. n ( m  e.  ( F ( PHtpy `  J ) H )  /\  n  e.  ( G ( PHtpy `  J
) K ) )  ->  ( ( F ( *p `  J
) G ) (
PHtpy `  J ) ( H ( *p `  J ) K ) )  =/=  (/) ) )
4028, 39mpd 15 . 2  |-  ( ph  ->  ( ( F ( *p `  J ) G ) ( PHtpy `  J ) ( H ( *p `  J
) K ) )  =/=  (/) )
41 isphtpc 22793 . 2  |-  ( ( F ( *p `  J ) G ) (  ~=ph  `  J ) ( H ( *p
`  J ) K )  <->  ( ( F ( *p `  J
) G )  e.  ( II  Cn  J
)  /\  ( H
( *p `  J
) K )  e.  ( II  Cn  J
)  /\  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) )  =/=  (/) ) )
4210, 20, 40, 41syl3anbrc 1246 1  |-  ( ph  ->  ( F ( *p
`  J ) G ) (  ~=ph  `  J
) ( H ( *p `  J ) K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   (/)c0 3915   ifcif 4086   class class class wbr 4653   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   [,]cicc 12178    Cn ccn 21028   IIcii 22678   PHtpycphtpy 22767    ~=ph cphtpc 22768   *pcpco 22800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pco 22805
This theorem is referenced by:  pcophtb  22829  pi1cpbl  22844  pi1xfrf  22853  pi1xfr  22855  pi1xfrcnvlem  22856
  Copyright terms: Public domain W3C validator