| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhprelat3N | Structured version Visualization version Unicode version | ||
| Description: The Hilbert lattice is relatively atomic with respect to co-atoms (lattice hyperplanes). Dual version of hlrelat3 34698. (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lhprelat3.b |
|
| lhprelat3.l |
|
| lhprelat3.s |
|
| lhprelat3.m |
|
| lhprelat3.c |
|
| lhprelat3.h |
|
| Ref | Expression |
|---|---|
| lhprelat3N |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . . 5
| |
| 2 | simpll1 1100 |
. . . . . 6
| |
| 3 | lhprelat3.b |
. . . . . . . 8
| |
| 4 | eqid 2622 |
. . . . . . . 8
| |
| 5 | 3, 4 | atbase 34576 |
. . . . . . 7
|
| 6 | 5 | adantl 482 |
. . . . . 6
|
| 7 | eqid 2622 |
. . . . . . 7
| |
| 8 | lhprelat3.h |
. . . . . . 7
| |
| 9 | 3, 7, 4, 8 | lhpoc2N 35301 |
. . . . . 6
|
| 10 | 2, 6, 9 | syl2anc 693 |
. . . . 5
|
| 11 | 1, 10 | mpbid 222 |
. . . 4
|
| 12 | 11 | adantr 481 |
. . 3
|
| 13 | hlop 34649 |
. . . . . . . . 9
| |
| 14 | 2, 13 | syl 17 |
. . . . . . . 8
|
| 15 | hllat 34650 |
. . . . . . . . . 10
| |
| 16 | 2, 15 | syl 17 |
. . . . . . . . 9
|
| 17 | simpll3 1102 |
. . . . . . . . 9
| |
| 18 | 3, 7 | opoccl 34481 |
. . . . . . . . . 10
|
| 19 | 14, 6, 18 | syl2anc 693 |
. . . . . . . . 9
|
| 20 | lhprelat3.m |
. . . . . . . . . 10
| |
| 21 | 3, 20 | latmcl 17052 |
. . . . . . . . 9
|
| 22 | 16, 17, 19, 21 | syl3anc 1326 |
. . . . . . . 8
|
| 23 | lhprelat3.c |
. . . . . . . . 9
| |
| 24 | 3, 7, 23 | cvrcon3b 34564 |
. . . . . . . 8
|
| 25 | 14, 22, 17, 24 | syl3anc 1326 |
. . . . . . 7
|
| 26 | hlol 34648 |
. . . . . . . . . 10
| |
| 27 | 2, 26 | syl 17 |
. . . . . . . . 9
|
| 28 | eqid 2622 |
. . . . . . . . . 10
| |
| 29 | 3, 28, 20, 7 | oldmm3N 34506 |
. . . . . . . . 9
|
| 30 | 27, 17, 6, 29 | syl3anc 1326 |
. . . . . . . 8
|
| 31 | 30 | breq2d 4665 |
. . . . . . 7
|
| 32 | 25, 31 | bitr2d 269 |
. . . . . 6
|
| 33 | simpll2 1101 |
. . . . . . . 8
| |
| 34 | lhprelat3.l |
. . . . . . . . 9
| |
| 35 | 3, 34, 7 | oplecon3b 34487 |
. . . . . . . 8
|
| 36 | 14, 33, 22, 35 | syl3anc 1326 |
. . . . . . 7
|
| 37 | 30 | breq1d 4663 |
. . . . . . 7
|
| 38 | 36, 37 | bitr2d 269 |
. . . . . 6
|
| 39 | 32, 38 | anbi12d 747 |
. . . . 5
|
| 40 | 39 | biimpa 501 |
. . . 4
|
| 41 | 40 | ancomd 467 |
. . 3
|
| 42 | oveq2 6658 |
. . . . . 6
| |
| 43 | 42 | breq2d 4665 |
. . . . 5
|
| 44 | 42 | breq1d 4663 |
. . . . 5
|
| 45 | 43, 44 | anbi12d 747 |
. . . 4
|
| 46 | 45 | rspcev 3309 |
. . 3
|
| 47 | 12, 41, 46 | syl2anc 693 |
. 2
|
| 48 | simpl1 1064 |
. . 3
| |
| 49 | 48, 13 | syl 17 |
. . . 4
|
| 50 | simpl3 1066 |
. . . 4
| |
| 51 | 3, 7 | opoccl 34481 |
. . . 4
|
| 52 | 49, 50, 51 | syl2anc 693 |
. . 3
|
| 53 | simpl2 1065 |
. . . 4
| |
| 54 | 3, 7 | opoccl 34481 |
. . . 4
|
| 55 | 49, 53, 54 | syl2anc 693 |
. . 3
|
| 56 | simpr 477 |
. . . 4
| |
| 57 | lhprelat3.s |
. . . . . 6
| |
| 58 | 3, 57, 7 | opltcon3b 34491 |
. . . . 5
|
| 59 | 49, 53, 50, 58 | syl3anc 1326 |
. . . 4
|
| 60 | 56, 59 | mpbid 222 |
. . 3
|
| 61 | 3, 34, 57, 28, 23, 4 | hlrelat3 34698 |
. . 3
|
| 62 | 48, 52, 55, 60, 61 | syl31anc 1329 |
. 2
|
| 63 | 47, 62 | r19.29a 3078 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-preset 16928 df-poset 16946 df-plt 16958 df-lub 16974 df-glb 16975 df-join 16976 df-meet 16977 df-p0 17039 df-p1 17040 df-lat 17046 df-clat 17108 df-oposet 34463 df-ol 34465 df-oml 34466 df-covers 34553 df-ats 34554 df-atl 34585 df-cvlat 34609 df-hlat 34638 df-lhyp 35274 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |