MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupgle Structured version   Visualization version   Unicode version

Theorem limsupgle 14208
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014.) (Revised by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
Assertion
Ref Expression
limsupgle  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( G `  C )  <_  A  <->  A. j  e.  B  ( C  <_  j  ->  ( F `  j )  <_  A ) ) )
Distinct variable groups:    k, F    A, j    B, j    C, j, k    j, F
Allowed substitution hints:    A( k)    B( k)    G( j, k)

Proof of Theorem limsupgle
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 limsupval.1 . . . . 5  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
21limsupgval 14207 . . . 4  |-  ( C  e.  RR  ->  ( G `  C )  =  sup ( ( ( F " ( C [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
323ad2ant2 1083 . . 3  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( G `  C
)  =  sup (
( ( F "
( C [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
43breq1d 4663 . 2  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( G `  C )  <_  A  <->  sup ( ( ( F
" ( C [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  A ) )
5 inss2 3834 . . 3  |-  ( ( F " ( C [,) +oo ) )  i^i  RR* )  C_  RR*
6 simp3 1063 . . 3  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  A  e.  RR* )
7 supxrleub 12156 . . 3  |-  ( ( ( ( F "
( C [,) +oo ) )  i^i  RR* )  C_  RR*  /\  A  e. 
RR* )  ->  ( sup ( ( ( F
" ( C [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  A  <->  A. x  e.  ( ( F "
( C [,) +oo ) )  i^i  RR* ) x  <_  A ) )
85, 6, 7sylancr 695 . 2  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( sup ( ( ( F " ( C [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  A  <->  A. x  e.  ( ( F " ( C [,) +oo ) )  i^i  RR* ) x  <_  A ) )
9 imassrn 5477 . . . . . . 7  |-  ( F
" ( C [,) +oo ) )  C_  ran  F
10 simp1r 1086 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  F : B --> RR* )
11 frn 6053 . . . . . . . 8  |-  ( F : B --> RR*  ->  ran 
F  C_  RR* )
1210, 11syl 17 . . . . . . 7  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ran  F  C_  RR* )
139, 12syl5ss 3614 . . . . . 6  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( F " ( C [,) +oo ) ) 
C_  RR* )
14 df-ss 3588 . . . . . 6  |-  ( ( F " ( C [,) +oo ) ) 
C_  RR*  <->  ( ( F
" ( C [,) +oo ) )  i^i  RR* )  =  ( F " ( C [,) +oo ) ) )
1513, 14sylib 208 . . . . 5  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( F "
( C [,) +oo ) )  i^i  RR* )  =  ( F " ( C [,) +oo ) ) )
16 imadmres 5627 . . . . 5  |-  ( F
" dom  ( F  |`  ( C [,) +oo ) ) )  =  ( F " ( C [,) +oo ) )
1715, 16syl6eqr 2674 . . . 4  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( F "
( C [,) +oo ) )  i^i  RR* )  =  ( F " dom  ( F  |`  ( C [,) +oo )
) ) )
1817raleqdv 3144 . . 3  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( A. x  e.  ( ( F "
( C [,) +oo ) )  i^i  RR* ) x  <_  A  <->  A. x  e.  ( F " dom  ( F  |`  ( C [,) +oo ) ) ) x  <_  A
) )
19 ffn 6045 . . . . 5  |-  ( F : B --> RR*  ->  F  Fn  B )
2010, 19syl 17 . . . 4  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  F  Fn  B )
21 fdm 6051 . . . . . . . 8  |-  ( F : B --> RR*  ->  dom 
F  =  B )
2210, 21syl 17 . . . . . . 7  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  dom  F  =  B )
2322ineq2d 3814 . . . . . 6  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( C [,) +oo )  i^i  dom  F
)  =  ( ( C [,) +oo )  i^i  B ) )
24 dmres 5419 . . . . . 6  |-  dom  ( F  |`  ( C [,) +oo ) )  =  ( ( C [,) +oo )  i^i  dom  F )
25 incom 3805 . . . . . 6  |-  ( B  i^i  ( C [,) +oo ) )  =  ( ( C [,) +oo )  i^i  B )
2623, 24, 253eqtr4g 2681 . . . . 5  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  dom  ( F  |`  ( C [,) +oo )
)  =  ( B  i^i  ( C [,) +oo ) ) )
27 inss1 3833 . . . . 5  |-  ( B  i^i  ( C [,) +oo ) )  C_  B
2826, 27syl6eqss 3655 . . . 4  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  dom  ( F  |`  ( C [,) +oo )
)  C_  B )
29 breq1 4656 . . . . 5  |-  ( x  =  ( F `  j )  ->  (
x  <_  A  <->  ( F `  j )  <_  A
) )
3029ralima 6498 . . . 4  |-  ( ( F  Fn  B  /\  dom  ( F  |`  ( C [,) +oo ) ) 
C_  B )  -> 
( A. x  e.  ( F " dom  ( F  |`  ( C [,) +oo ) ) ) x  <_  A  <->  A. j  e.  dom  ( F  |`  ( C [,) +oo ) ) ( F `
 j )  <_  A ) )
3120, 28, 30syl2anc 693 . . 3  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( A. x  e.  ( F " dom  ( F  |`  ( C [,) +oo ) ) ) x  <_  A  <->  A. j  e.  dom  ( F  |`  ( C [,) +oo ) ) ( F `
 j )  <_  A ) )
3226eleq2d 2687 . . . . . . . 8  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( j  e.  dom  ( F  |`  ( C [,) +oo ) )  <-> 
j  e.  ( B  i^i  ( C [,) +oo ) ) ) )
33 elin 3796 . . . . . . . 8  |-  ( j  e.  ( B  i^i  ( C [,) +oo )
)  <->  ( j  e.  B  /\  j  e.  ( C [,) +oo ) ) )
3432, 33syl6bb 276 . . . . . . 7  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( j  e.  dom  ( F  |`  ( C [,) +oo ) )  <-> 
( j  e.  B  /\  j  e.  ( C [,) +oo ) ) ) )
35 simpl2 1065 . . . . . . . . 9  |-  ( ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e. 
RR* )  /\  j  e.  B )  ->  C  e.  RR )
36 simp1l 1085 . . . . . . . . . 10  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  B  C_  RR )
3736sselda 3603 . . . . . . . . 9  |-  ( ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e. 
RR* )  /\  j  e.  B )  ->  j  e.  RR )
38 elicopnf 12269 . . . . . . . . . 10  |-  ( C  e.  RR  ->  (
j  e.  ( C [,) +oo )  <->  ( j  e.  RR  /\  C  <_ 
j ) ) )
3938baibd 948 . . . . . . . . 9  |-  ( ( C  e.  RR  /\  j  e.  RR )  ->  ( j  e.  ( C [,) +oo )  <->  C  <_  j ) )
4035, 37, 39syl2anc 693 . . . . . . . 8  |-  ( ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e. 
RR* )  /\  j  e.  B )  ->  (
j  e.  ( C [,) +oo )  <->  C  <_  j ) )
4140pm5.32da 673 . . . . . . 7  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( j  e.  B  /\  j  e.  ( C [,) +oo ) )  <->  ( j  e.  B  /\  C  <_ 
j ) ) )
4234, 41bitrd 268 . . . . . 6  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( j  e.  dom  ( F  |`  ( C [,) +oo ) )  <-> 
( j  e.  B  /\  C  <_  j ) ) )
4342imbi1d 331 . . . . 5  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( j  e. 
dom  ( F  |`  ( C [,) +oo )
)  ->  ( F `  j )  <_  A
)  <->  ( ( j  e.  B  /\  C  <_  j )  ->  ( F `  j )  <_  A ) ) )
44 impexp 462 . . . . 5  |-  ( ( ( j  e.  B  /\  C  <_  j )  ->  ( F `  j )  <_  A
)  <->  ( j  e.  B  ->  ( C  <_  j  ->  ( F `  j )  <_  A
) ) )
4543, 44syl6bb 276 . . . 4  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( j  e. 
dom  ( F  |`  ( C [,) +oo )
)  ->  ( F `  j )  <_  A
)  <->  ( j  e.  B  ->  ( C  <_  j  ->  ( F `  j )  <_  A
) ) ) )
4645ralbidv2 2984 . . 3  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( A. j  e. 
dom  ( F  |`  ( C [,) +oo )
) ( F `  j )  <_  A  <->  A. j  e.  B  ( C  <_  j  ->  ( F `  j )  <_  A ) ) )
4718, 31, 463bitrd 294 . 2  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( A. x  e.  ( ( F "
( C [,) +oo ) )  i^i  RR* ) x  <_  A  <->  A. j  e.  B  ( C  <_  j  ->  ( F `  j )  <_  A
) ) )
484, 8, 473bitrd 294 1  |-  ( ( ( B  C_  RR  /\  F : B --> RR* )  /\  C  e.  RR  /\  A  e.  RR* )  ->  ( ( G `  C )  <_  A  <->  A. j  e.  B  ( C  <_  j  ->  ( F `  j )  <_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181
This theorem is referenced by:  limsupgre  14212  limsupbnd1  14213  limsupbnd2  14214  mbflimsup  23433
  Copyright terms: Public domain W3C validator