MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limsupval2 Structured version   Visualization version   Unicode version

Theorem limsupval2 14211
Description: The superior limit, relativized to an unbounded set. (Contributed by Mario Carneiro, 7-Sep-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
limsupval.1  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
limsupval2.1  |-  ( ph  ->  F  e.  V )
limsupval2.2  |-  ( ph  ->  A  C_  RR )
limsupval2.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
Assertion
Ref Expression
limsupval2  |-  ( ph  ->  ( limsup `  F )  = inf ( ( G " A ) ,  RR* ,  <  ) )
Distinct variable groups:    k, F    A, k
Allowed substitution hints:    ph( k)    G( k)    V( k)

Proof of Theorem limsupval2
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limsupval2.1 . . 3  |-  ( ph  ->  F  e.  V )
2 limsupval.1 . . . 4  |-  G  =  ( k  e.  RR  |->  sup ( ( ( F
" ( k [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
32limsupval 14205 . . 3  |-  ( F  e.  V  ->  ( limsup `
 F )  = inf ( ran  G ,  RR* ,  <  ) )
41, 3syl 17 . 2  |-  ( ph  ->  ( limsup `  F )  = inf ( ran  G ,  RR* ,  <  ) )
5 imassrn 5477 . . . . 5  |-  ( G
" A )  C_  ran  G
62limsupgf 14206 . . . . . . 7  |-  G : RR
--> RR*
7 frn 6053 . . . . . . 7  |-  ( G : RR --> RR*  ->  ran 
G  C_  RR* )
86, 7ax-mp 5 . . . . . 6  |-  ran  G  C_ 
RR*
9 infxrlb 12164 . . . . . . 7  |-  ( ( ran  G  C_  RR*  /\  x  e.  ran  G )  -> inf ( ran  G ,  RR* ,  <  )  <_  x
)
109ralrimiva 2966 . . . . . 6  |-  ( ran 
G  C_  RR*  ->  A. x  e.  ran  Ginf ( ran 
G ,  RR* ,  <  )  <_  x )
118, 10mp1i 13 . . . . 5  |-  ( ph  ->  A. x  e.  ran  Ginf ( ran  G ,  RR* ,  <  )  <_  x )
12 ssralv 3666 . . . . 5  |-  ( ( G " A ) 
C_  ran  G  ->  ( A. x  e.  ran  Ginf ( ran  G ,  RR* ,  <  )  <_  x  ->  A. x  e.  ( G " A )inf ( ran  G ,  RR* ,  <  )  <_  x ) )
135, 11, 12mpsyl 68 . . . 4  |-  ( ph  ->  A. x  e.  ( G " A )inf ( ran  G ,  RR* ,  <  )  <_  x )
145, 8sstri 3612 . . . . 5  |-  ( G
" A )  C_  RR*
15 infxrcl 12163 . . . . . 6  |-  ( ran 
G  C_  RR*  -> inf ( ran 
G ,  RR* ,  <  )  e.  RR* )
168, 15ax-mp 5 . . . . 5  |- inf ( ran 
G ,  RR* ,  <  )  e.  RR*
17 infxrgelb 12165 . . . . 5  |-  ( ( ( G " A
)  C_  RR*  /\ inf ( ran  G ,  RR* ,  <  )  e.  RR* )  ->  (inf ( ran  G ,  RR* ,  <  )  <_ inf ( ( G " A ) ,  RR* ,  <  )  <->  A. x  e.  ( G
" A )inf ( ran  G ,  RR* ,  <  )  <_  x
) )
1814, 16, 17mp2an 708 . . . 4  |-  (inf ( ran  G ,  RR* ,  <  )  <_ inf ( ( G " A ) ,  RR* ,  <  )  <->  A. x  e.  ( G
" A )inf ( ran  G ,  RR* ,  <  )  <_  x
)
1913, 18sylibr 224 . . 3  |-  ( ph  -> inf ( ran  G ,  RR* ,  <  )  <_ inf ( ( G " A ) ,  RR* ,  <  ) )
20 limsupval2.3 . . . . . . 7  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = +oo )
21 limsupval2.2 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
22 ressxr 10083 . . . . . . . . 9  |-  RR  C_  RR*
2321, 22syl6ss 3615 . . . . . . . 8  |-  ( ph  ->  A  C_  RR* )
24 supxrunb1 12149 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
2523, 24syl 17 . . . . . . 7  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  <->  sup ( A ,  RR* ,  <  )  = +oo ) )
2620, 25mpbird 247 . . . . . 6  |-  ( ph  ->  A. n  e.  RR  E. x  e.  A  n  <_  x )
27 infxrcl 12163 . . . . . . . . . 10  |-  ( ( G " A ) 
C_  RR*  -> inf ( ( G " A ) , 
RR* ,  <  )  e. 
RR* )
2814, 27mp1i 13 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  -> inf ( ( G
" A ) , 
RR* ,  <  )  e. 
RR* )
2921sselda 3603 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
3029ad2ant2r 783 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  RR )
316ffvelrni 6358 . . . . . . . . . 10  |-  ( x  e.  RR  ->  ( G `  x )  e.  RR* )
3230, 31syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  e.  RR* )
336ffvelrni 6358 . . . . . . . . . 10  |-  ( n  e.  RR  ->  ( G `  n )  e.  RR* )
3433ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  e.  RR* )
35 ffn 6045 . . . . . . . . . . . 12  |-  ( G : RR --> RR*  ->  G  Fn  RR )
366, 35mp1i 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  G  Fn  RR )
3721ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  A  C_  RR )
38 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  x  e.  A
)
39 fnfvima 6496 . . . . . . . . . . 11  |-  ( ( G  Fn  RR  /\  A  C_  RR  /\  x  e.  A )  ->  ( G `  x )  e.  ( G " A
) )
4036, 37, 38, 39syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  e.  ( G " A ) )
41 infxrlb 12164 . . . . . . . . . 10  |-  ( ( ( G " A
)  C_  RR*  /\  ( G `  x )  e.  ( G " A
) )  -> inf ( ( G " A ) ,  RR* ,  <  )  <_  ( G `  x
) )
4214, 40, 41sylancr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  -> inf ( ( G
" A ) , 
RR* ,  <  )  <_ 
( G `  x
) )
43 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  e.  RR )
44 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  n  <_  x
)
45 limsupgord 14203 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  x  e.  RR  /\  n  <_  x )  ->  sup ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4643, 30, 44, 45syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  sup ( ( ( F " ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  )  <_  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
472limsupgval 14207 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( G `  x )  =  sup ( ( ( F " ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
4830, 47syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  =  sup ( ( ( F
" ( x [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
492limsupgval 14207 . . . . . . . . . . 11  |-  ( n  e.  RR  ->  ( G `  n )  =  sup ( ( ( F " ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
5049ad2antlr 763 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  n )  =  sup ( ( ( F
" ( n [,) +oo ) )  i^i  RR* ) ,  RR* ,  <  ) )
5146, 48, 503brtr4d 4685 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  ->  ( G `  x )  <_  ( G `  n )
)
5228, 32, 34, 42, 51xrletrd 11993 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  RR )  /\  (
x  e.  A  /\  n  <_  x ) )  -> inf ( ( G
" A ) , 
RR* ,  <  )  <_ 
( G `  n
) )
5352rexlimdvaa 3032 . . . . . . 7  |-  ( (
ph  /\  n  e.  RR )  ->  ( E. x  e.  A  n  <_  x  -> inf ( ( G " A ) ,  RR* ,  <  )  <_  ( G `  n
) ) )
5453ralimdva 2962 . . . . . 6  |-  ( ph  ->  ( A. n  e.  RR  E. x  e.  A  n  <_  x  ->  A. n  e.  RR inf ( ( G " A ) ,  RR* ,  <  )  <_  ( G `  n )
) )
5526, 54mpd 15 . . . . 5  |-  ( ph  ->  A. n  e.  RR inf ( ( G " A ) ,  RR* ,  <  )  <_  ( G `  n )
)
566, 35ax-mp 5 . . . . . 6  |-  G  Fn  RR
57 breq2 4657 . . . . . . 7  |-  ( x  =  ( G `  n )  ->  (inf ( ( G " A ) ,  RR* ,  <  )  <_  x  <-> inf ( ( G " A
) ,  RR* ,  <  )  <_  ( G `  n ) ) )
5857ralrn 6362 . . . . . 6  |-  ( G  Fn  RR  ->  ( A. x  e.  ran  Ginf ( ( G " A ) ,  RR* ,  <  )  <_  x  <->  A. n  e.  RR inf (
( G " A
) ,  RR* ,  <  )  <_  ( G `  n ) ) )
5956, 58ax-mp 5 . . . . 5  |-  ( A. x  e.  ran  Ginf (
( G " A
) ,  RR* ,  <  )  <_  x  <->  A. n  e.  RR inf ( ( G
" A ) , 
RR* ,  <  )  <_ 
( G `  n
) )
6055, 59sylibr 224 . . . 4  |-  ( ph  ->  A. x  e.  ran  Ginf ( ( G " A ) ,  RR* ,  <  )  <_  x
)
6114, 27ax-mp 5 . . . . 5  |- inf ( ( G " A ) ,  RR* ,  <  )  e.  RR*
62 infxrgelb 12165 . . . . 5  |-  ( ( ran  G  C_  RR*  /\ inf (
( G " A
) ,  RR* ,  <  )  e.  RR* )  ->  (inf ( ( G " A ) ,  RR* ,  <  )  <_ inf ( ran 
G ,  RR* ,  <  )  <->  A. x  e.  ran  Ginf ( ( G " A ) ,  RR* ,  <  )  <_  x
) )
638, 61, 62mp2an 708 . . . 4  |-  (inf ( ( G " A
) ,  RR* ,  <  )  <_ inf ( ran  G ,  RR* ,  <  )  <->  A. x  e.  ran  Ginf ( ( G " A ) ,  RR* ,  <  )  <_  x
)
6460, 63sylibr 224 . . 3  |-  ( ph  -> inf ( ( G " A ) ,  RR* ,  <  )  <_ inf ( ran 
G ,  RR* ,  <  ) )
65 xrletri3 11985 . . . 4  |-  ( (inf ( ran  G ,  RR* ,  <  )  e. 
RR*  /\ inf ( ( G " A ) , 
RR* ,  <  )  e. 
RR* )  ->  (inf ( ran  G ,  RR* ,  <  )  = inf (
( G " A
) ,  RR* ,  <  )  <-> 
(inf ( ran  G ,  RR* ,  <  )  <_ inf ( ( G " A ) ,  RR* ,  <  )  /\ inf (
( G " A
) ,  RR* ,  <  )  <_ inf ( ran  G ,  RR* ,  <  )
) ) )
6616, 61, 65mp2an 708 . . 3  |-  (inf ( ran  G ,  RR* ,  <  )  = inf (
( G " A
) ,  RR* ,  <  )  <-> 
(inf ( ran  G ,  RR* ,  <  )  <_ inf ( ( G " A ) ,  RR* ,  <  )  /\ inf (
( G " A
) ,  RR* ,  <  )  <_ inf ( ran  G ,  RR* ,  <  )
) )
6719, 64, 66sylanbrc 698 . 2  |-  ( ph  -> inf ( ran  G ,  RR* ,  <  )  = inf ( ( G " A ) ,  RR* ,  <  ) )
684, 67eqtrd 2656 1  |-  ( ph  ->  ( limsup `  F )  = inf ( ( G " A ) ,  RR* ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346  infcinf 8347   RRcr 9935   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   limsupclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-limsup 14202
This theorem is referenced by:  mbflimsup  23433  limsupresico  39932  limsupvaluz  39940
  Copyright terms: Public domain W3C validator