MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuval Structured version   Visualization version   Unicode version

Theorem mamuval 20192
Description: Multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
mamufval.b  |-  B  =  ( Base `  R
)
mamufval.t  |-  .x.  =  ( .r `  R )
mamufval.r  |-  ( ph  ->  R  e.  V )
mamufval.m  |-  ( ph  ->  M  e.  Fin )
mamufval.n  |-  ( ph  ->  N  e.  Fin )
mamufval.p  |-  ( ph  ->  P  e.  Fin )
mamuval.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamuval.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
Assertion
Ref Expression
mamuval  |-  ( ph  ->  ( X F Y )  =  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Y k ) ) ) ) ) )
Distinct variable groups:    i, j,
k, M    i, N, j, k    P, i, j, k    R, i, j, k   
i, X, j, k   
i, Y, j, k    ph, i, j, k    .x. , i,
k
Allowed substitution hints:    B( i, j, k)    .x. ( j)    F( i,
j, k)    V( i,
j, k)

Proof of Theorem mamuval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
2 mamufval.b . . 3  |-  B  =  ( Base `  R
)
3 mamufval.t . . 3  |-  .x.  =  ( .r `  R )
4 mamufval.r . . 3  |-  ( ph  ->  R  e.  V )
5 mamufval.m . . 3  |-  ( ph  ->  M  e.  Fin )
6 mamufval.n . . 3  |-  ( ph  ->  N  e.  Fin )
7 mamufval.p . . 3  |-  ( ph  ->  P  e.  Fin )
81, 2, 3, 4, 5, 6, 7mamufval 20191 . 2  |-  ( ph  ->  F  =  ( x  e.  ( B  ^m  ( M  X.  N
) ) ,  y  e.  ( B  ^m  ( N  X.  P
) )  |->  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
j y k ) ) ) ) ) ) )
9 oveq 6656 . . . . . . 7  |-  ( x  =  X  ->  (
i x j )  =  ( i X j ) )
10 oveq 6656 . . . . . . 7  |-  ( y  =  Y  ->  (
j y k )  =  ( j Y k ) )
119, 10oveqan12d 6669 . . . . . 6  |-  ( ( x  =  X  /\  y  =  Y )  ->  ( ( i x j )  .x.  (
j y k ) )  =  ( ( i X j ) 
.x.  ( j Y k ) ) )
1211adantl 482 . . . . 5  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( ( i x j )  .x.  (
j y k ) )  =  ( ( i X j ) 
.x.  ( j Y k ) ) )
1312mpteq2dv 4745 . . . 4  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( j  e.  N  |->  ( ( i x j )  .x.  (
j y k ) ) )  =  ( j  e.  N  |->  ( ( i X j )  .x.  ( j Y k ) ) ) )
1413oveq2d 6666 . . 3  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
j y k ) ) ) )  =  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Y k ) ) ) ) )
1514mpt2eq3dv 6721 . 2  |-  ( (
ph  /\  ( x  =  X  /\  y  =  Y ) )  -> 
( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i x j )  .x.  (
j y k ) ) ) ) )  =  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) 
.x.  ( j Y k ) ) ) ) ) )
16 mamuval.x . 2  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
17 mamuval.y . 2  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
18 mpt2exga 7246 . . 3  |-  ( ( M  e.  Fin  /\  P  e.  Fin )  ->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Y k ) ) ) ) )  e.  _V )
195, 7, 18syl2anc 693 . 2  |-  ( ph  ->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Y k ) ) ) ) )  e.  _V )
208, 15, 16, 17, 19ovmpt2d 6788 1  |-  ( ph  ->  ( X F Y )  =  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Y k ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cotp 4185    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   maMul cmmul 20189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mamu 20190
This theorem is referenced by:  mamufv  20193  mamures  20196  mamucl  20207  mpt2matmul  20252  mamutpos  20264  mat1dimmul  20282  dmatmul  20303  madurid  20450  cramerimplem2  20490  mat2pmatmul  20536  decpmatmul  20577
  Copyright terms: Public domain W3C validator