MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamutpos Structured version   Visualization version   Unicode version

Theorem mamutpos 20264
Description: Behavior of transposes in matrix products, see also the statement in [Lang] p. 505. (Contributed by Stefan O'Rear, 9-Jul-2018.)
Hypotheses
Ref Expression
mamutpos.f  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
mamutpos.g  |-  G  =  ( R maMul  <. P ,  N ,  M >. )
mamutpos.b  |-  B  =  ( Base `  R
)
mamutpos.r  |-  ( ph  ->  R  e.  CRing )
mamutpos.m  |-  ( ph  ->  M  e.  Fin )
mamutpos.n  |-  ( ph  ->  N  e.  Fin )
mamutpos.p  |-  ( ph  ->  P  e.  Fin )
mamutpos.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamutpos.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
Assertion
Ref Expression
mamutpos  |-  ( ph  -> tpos  ( X F Y )  =  (tpos  Y Gtpos  X ) )

Proof of Theorem mamutpos
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . 4  |-  ( j  e.  M ,  i  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) )  =  ( j  e.  M ,  i  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r `  R
) ( k Y i ) ) ) ) )
21tposmpt2 7389 . . 3  |- tpos  ( j  e.  M ,  i  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) )  =  ( i  e.  P ,  j  e.  M  |->  ( R  gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r `  R
) ( k Y i ) ) ) ) )
3 simpl1 1064 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  ph )
4 mamutpos.r . . . . . . . . 9  |-  ( ph  ->  R  e.  CRing )
53, 4syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  R  e.  CRing )
6 mamutpos.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
7 elmapi 7879 . . . . . . . . . 10  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
83, 6, 73syl 18 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  X : ( M  X.  N ) --> B )
9 simpl3 1066 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  j  e.  M )
10 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  k  e.  N )
118, 9, 10fovrnd 6806 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  (
j X k )  e.  B )
12 mamutpos.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
13 elmapi 7879 . . . . . . . . . 10  |-  ( Y  e.  ( B  ^m  ( N  X.  P
) )  ->  Y : ( N  X.  P ) --> B )
143, 12, 133syl 18 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  Y : ( N  X.  P ) --> B )
15 simpl2 1065 . . . . . . . . 9  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  i  e.  P )
1614, 10, 15fovrnd 6806 . . . . . . . 8  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  (
k Y i )  e.  B )
17 mamutpos.b . . . . . . . . 9  |-  B  =  ( Base `  R
)
18 eqid 2622 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
1917, 18crngcom 18562 . . . . . . . 8  |-  ( ( R  e.  CRing  /\  (
j X k )  e.  B  /\  (
k Y i )  e.  B )  -> 
( ( j X k ) ( .r
`  R ) ( k Y i ) )  =  ( ( k Y i ) ( .r `  R
) ( j X k ) ) )
205, 11, 16, 19syl3anc 1326 . . . . . . 7  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  (
( j X k ) ( .r `  R ) ( k Y i ) )  =  ( ( k Y i ) ( .r `  R ) ( j X k ) ) )
21 ovtpos 7367 . . . . . . . 8  |-  ( itpos 
Y k )  =  ( k Y i )
22 ovtpos 7367 . . . . . . . 8  |-  ( ktpos 
X j )  =  ( j X k )
2321, 22oveq12i 6662 . . . . . . 7  |-  ( ( itpos  Y k ) ( .r `  R
) ( ktpos  X
j ) )  =  ( ( k Y i ) ( .r
`  R ) ( j X k ) )
2420, 23syl6eqr 2674 . . . . . 6  |-  ( ( ( ph  /\  i  e.  P  /\  j  e.  M )  /\  k  e.  N )  ->  (
( j X k ) ( .r `  R ) ( k Y i ) )  =  ( ( itpos 
Y k ) ( .r `  R ) ( ktpos  X j ) ) )
2524mpteq2dva 4744 . . . . 5  |-  ( (
ph  /\  i  e.  P  /\  j  e.  M
)  ->  ( k  e.  N  |->  ( ( j X k ) ( .r `  R
) ( k Y i ) ) )  =  ( k  e.  N  |->  ( ( itpos 
Y k ) ( .r `  R ) ( ktpos  X j ) ) ) )
2625oveq2d 6666 . . . 4  |-  ( (
ph  /\  i  e.  P  /\  j  e.  M
)  ->  ( R  gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r `  R ) ( k Y i ) ) ) )  =  ( R  gsumg  ( k  e.  N  |->  ( ( itpos  Y
k ) ( .r
`  R ) ( ktpos  X j ) ) ) ) )
2726mpt2eq3dva 6719 . . 3  |-  ( ph  ->  ( i  e.  P ,  j  e.  M  |->  ( R  gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) )  =  ( i  e.  P ,  j  e.  M  |->  ( R  gsumg  ( k  e.  N  |->  ( ( itpos  Y k ) ( .r `  R
) ( ktpos  X
j ) ) ) ) ) )
282, 27syl5eq 2668 . 2  |-  ( ph  -> tpos  ( j  e.  M ,  i  e.  P  |->  ( R  gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) )  =  ( i  e.  P ,  j  e.  M  |->  ( R  gsumg  ( k  e.  N  |->  ( ( itpos  Y k ) ( .r `  R
) ( ktpos  X
j ) ) ) ) ) )
29 mamutpos.f . . . 4  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
30 mamutpos.m . . . 4  |-  ( ph  ->  M  e.  Fin )
31 mamutpos.n . . . 4  |-  ( ph  ->  N  e.  Fin )
32 mamutpos.p . . . 4  |-  ( ph  ->  P  e.  Fin )
3329, 17, 18, 4, 30, 31, 32, 6, 12mamuval 20192 . . 3  |-  ( ph  ->  ( X F Y )  =  ( j  e.  M ,  i  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) ) )
3433tposeqd 7355 . 2  |-  ( ph  -> tpos  ( X F Y )  = tpos  ( j  e.  M ,  i  e.  P  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( j X k ) ( .r
`  R ) ( k Y i ) ) ) ) ) )
35 mamutpos.g . . 3  |-  G  =  ( R maMul  <. P ,  N ,  M >. )
36 tposmap 20263 . . . 4  |-  ( Y  e.  ( B  ^m  ( N  X.  P
) )  -> tpos  Y  e.  ( B  ^m  ( P  X.  N ) ) )
3712, 36syl 17 . . 3  |-  ( ph  -> tpos  Y  e.  ( B  ^m  ( P  X.  N ) ) )
38 tposmap 20263 . . . 4  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  -> tpos  X  e.  ( B  ^m  ( N  X.  M ) ) )
396, 38syl 17 . . 3  |-  ( ph  -> tpos  X  e.  ( B  ^m  ( N  X.  M ) ) )
4035, 17, 18, 4, 32, 31, 30, 37, 39mamuval 20192 . 2  |-  ( ph  ->  (tpos  Y Gtpos  X
)  =  ( i  e.  P ,  j  e.  M  |->  ( R 
gsumg  ( k  e.  N  |->  ( ( itpos  Y
k ) ( .r
`  R ) ( ktpos  X j ) ) ) ) ) )
4128, 34, 403eqtr4d 2666 1  |-  ( ph  -> tpos  ( X F Y )  =  (tpos  Y Gtpos  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cotp 4185    |-> cmpt 4729    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  tpos ctpos 7351    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   CRingccrg 18548   maMul cmmul 20189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-cmn 18195  df-mgp 18490  df-cring 18550  df-mamu 20190
This theorem is referenced by:  mattposm  20265
  Copyright terms: Public domain W3C validator