MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpt2matmul Structured version   Visualization version   Unicode version

Theorem mpt2matmul 20252
Description: Multiplication of two N x N matrices given in maps-to notation. (Contributed by AV, 29-Oct-2019.)
Hypotheses
Ref Expression
mpt2matmul.a  |-  A  =  ( N Mat  R )
mpt2matmul.b  |-  B  =  ( Base `  R
)
mpt2matmul.m  |-  .X.  =  ( .r `  A )
mpt2matmul.t  |-  .x.  =  ( .r `  R )
mpt2matmul.r  |-  ( ph  ->  R  e.  V )
mpt2matmul.n  |-  ( ph  ->  N  e.  Fin )
mpt2matmul.x  |-  X  =  ( i  e.  N ,  j  e.  N  |->  C )
mpt2matmul.y  |-  Y  =  ( i  e.  N ,  j  e.  N  |->  E )
mpt2matmul.c  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  C  e.  B )
mpt2matmul.e  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  E  e.  B )
mpt2matmul.d  |-  ( (
ph  /\  ( k  =  i  /\  m  =  j ) )  ->  D  =  C )
mpt2matmul.f  |-  ( (
ph  /\  ( m  =  i  /\  l  =  j ) )  ->  F  =  E )
mpt2matmul.1  |-  ( (
ph  /\  k  e.  N  /\  m  e.  N
)  ->  D  e.  U )
mpt2matmul.2  |-  ( (
ph  /\  m  e.  N  /\  l  e.  N
)  ->  F  e.  W )
Assertion
Ref Expression
mpt2matmul  |-  ( ph  ->  ( X  .X.  Y
)  =  ( k  e.  N ,  l  e.  N  |->  ( R 
gsumg  ( m  e.  N  |->  ( D  .x.  F
) ) ) ) )
Distinct variable groups:    D, i,
j    i, F, j    i, N, j, k, l, m    R, i, j, k, l, m    k, X, l, m    k, Y, l, m    ph, i, j, k, l, m    .x. , k, l
Allowed substitution hints:    A( i, j, k, m, l)    B( i, j, k, m, l)    C( i, j, k, m, l)    D( k, m, l)    .x. ( i, j, m)    .X. ( i,
j, k, m, l)    U( i, j, k, m, l)    E( i, j, k, m, l)    F( k, m, l)    V( i, j, k, m, l)    W( i, j, k, m, l)    X( i, j)    Y( i, j)

Proof of Theorem mpt2matmul
StepHypRef Expression
1 mpt2matmul.n . . 3  |-  ( ph  ->  N  e.  Fin )
2 mpt2matmul.r . . 3  |-  ( ph  ->  R  e.  V )
3 mpt2matmul.a . . . . . . 7  |-  A  =  ( N Mat  R )
4 eqid 2622 . . . . . . 7  |-  ( R maMul  <. N ,  N ,  N >. )  =  ( R maMul  <. N ,  N ,  N >. )
53, 4matmulr 20244 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
6 mpt2matmul.m . . . . . 6  |-  .X.  =  ( .r `  A )
75, 6syl6eqr 2674 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( R maMul  <. N ,  N ,  N >. )  =  .X.  )
87oveqd 6667 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( X ( R maMul  <. N ,  N ,  N >. ) Y )  =  ( X  .X.  Y ) )
98eqcomd 2628 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( X  .X.  Y
)  =  ( X ( R maMul  <. N ,  N ,  N >. ) Y ) )
101, 2, 9syl2anc 693 . 2  |-  ( ph  ->  ( X  .X.  Y
)  =  ( X ( R maMul  <. N ,  N ,  N >. ) Y ) )
11 eqid 2622 . . 3  |-  ( Base `  R )  =  (
Base `  R )
12 mpt2matmul.t . . 3  |-  .x.  =  ( .r `  R )
13 mpt2matmul.x . . . . 5  |-  X  =  ( i  e.  N ,  j  e.  N  |->  C )
14 eqid 2622 . . . . . 6  |-  ( Base `  A )  =  (
Base `  A )
15 mpt2matmul.c . . . . . . 7  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  C  e.  B )
16 mpt2matmul.b . . . . . . 7  |-  B  =  ( Base `  R
)
1715, 16syl6eleq 2711 . . . . . 6  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  C  e.  ( Base `  R )
)
183, 11, 14, 1, 2, 17matbas2d 20229 . . . . 5  |-  ( ph  ->  ( i  e.  N ,  j  e.  N  |->  C )  e.  (
Base `  A )
)
1913, 18syl5eqel 2705 . . . 4  |-  ( ph  ->  X  e.  ( Base `  A ) )
203, 11matbas2 20227 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( ( Base `  R
)  ^m  ( N  X.  N ) )  =  ( Base `  A
) )
211, 2, 20syl2anc 693 . . . 4  |-  ( ph  ->  ( ( Base `  R
)  ^m  ( N  X.  N ) )  =  ( Base `  A
) )
2219, 21eleqtrrd 2704 . . 3  |-  ( ph  ->  X  e.  ( (
Base `  R )  ^m  ( N  X.  N
) ) )
23 mpt2matmul.y . . . . 5  |-  Y  =  ( i  e.  N ,  j  e.  N  |->  E )
24 mpt2matmul.e . . . . . . 7  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  E  e.  B )
2524, 16syl6eleq 2711 . . . . . 6  |-  ( (
ph  /\  i  e.  N  /\  j  e.  N
)  ->  E  e.  ( Base `  R )
)
263, 11, 14, 1, 2, 25matbas2d 20229 . . . . 5  |-  ( ph  ->  ( i  e.  N ,  j  e.  N  |->  E )  e.  (
Base `  A )
)
2723, 26syl5eqel 2705 . . . 4  |-  ( ph  ->  Y  e.  ( Base `  A ) )
2827, 21eleqtrrd 2704 . . 3  |-  ( ph  ->  Y  e.  ( (
Base `  R )  ^m  ( N  X.  N
) ) )
294, 11, 12, 2, 1, 1, 1, 22, 28mamuval 20192 . 2  |-  ( ph  ->  ( X ( R maMul  <. N ,  N ,  N >. ) Y )  =  ( k  e.  N ,  l  e.  N  |->  ( R  gsumg  ( m  e.  N  |->  ( ( k X m ) 
.x.  ( m Y l ) ) ) ) ) )
3013a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  X  =  ( i  e.  N ,  j  e.  N  |->  C ) )
31 equcom 1945 . . . . . . . . . . . . . 14  |-  ( i  =  k  <->  k  =  i )
32 equcom 1945 . . . . . . . . . . . . . 14  |-  ( j  =  m  <->  m  =  j )
3331, 32anbi12i 733 . . . . . . . . . . . . 13  |-  ( ( i  =  k  /\  j  =  m )  <->  ( k  =  i  /\  m  =  j )
)
34 mpt2matmul.d . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( k  =  i  /\  m  =  j ) )  ->  D  =  C )
3533, 34sylan2b 492 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  =  k  /\  j  =  m ) )  ->  D  =  C )
3635eqcomd 2628 . . . . . . . . . . 11  |-  ( (
ph  /\  ( i  =  k  /\  j  =  m ) )  ->  C  =  D )
3736ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( ( i  =  k  /\  j  =  m )  ->  C  =  D ) )
38373ad2ant1 1082 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  N  /\  l  e.  N
)  ->  ( (
i  =  k  /\  j  =  m )  ->  C  =  D ) )
3938adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  (
( i  =  k  /\  j  =  m )  ->  C  =  D ) )
4039imp 445 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N
)  /\  ( i  =  k  /\  j  =  m ) )  ->  C  =  D )
41 simpl2 1065 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  k  e.  N )
42 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  m  e.  N )
43 simpl1 1064 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  ph )
44 mpt2matmul.1 . . . . . . . 8  |-  ( (
ph  /\  k  e.  N  /\  m  e.  N
)  ->  D  e.  U )
4543, 41, 42, 44syl3anc 1326 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  D  e.  U )
4630, 40, 41, 42, 45ovmpt2d 6788 . . . . . 6  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  (
k X m )  =  D )
4723a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  Y  =  ( i  e.  N ,  j  e.  N  |->  E ) )
48 equcomi 1944 . . . . . . . . . . . . . 14  |-  ( i  =  m  ->  m  =  i )
49 equcomi 1944 . . . . . . . . . . . . . 14  |-  ( j  =  l  ->  l  =  j )
5048, 49anim12i 590 . . . . . . . . . . . . 13  |-  ( ( i  =  m  /\  j  =  l )  ->  ( m  =  i  /\  l  =  j ) )
51 mpt2matmul.f . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( m  =  i  /\  l  =  j ) )  ->  F  =  E )
5250, 51sylan2 491 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  =  m  /\  j  =  l ) )  ->  F  =  E )
5352ex 450 . . . . . . . . . . 11  |-  ( ph  ->  ( ( i  =  m  /\  j  =  l )  ->  F  =  E ) )
54533ad2ant1 1082 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  N  /\  l  e.  N
)  ->  ( (
i  =  m  /\  j  =  l )  ->  F  =  E ) )
5554adantr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  (
( i  =  m  /\  j  =  l )  ->  F  =  E ) )
5655imp 445 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N
)  /\  ( i  =  m  /\  j  =  l ) )  ->  F  =  E )
5756eqcomd 2628 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N
)  /\  ( i  =  m  /\  j  =  l ) )  ->  E  =  F )
58 simpl3 1066 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  l  e.  N )
59 mpt2matmul.2 . . . . . . . 8  |-  ( (
ph  /\  m  e.  N  /\  l  e.  N
)  ->  F  e.  W )
6043, 42, 58, 59syl3anc 1326 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  F  e.  W )
6147, 57, 42, 58, 60ovmpt2d 6788 . . . . . 6  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  (
m Y l )  =  F )
6246, 61oveq12d 6668 . . . . 5  |-  ( ( ( ph  /\  k  e.  N  /\  l  e.  N )  /\  m  e.  N )  ->  (
( k X m )  .x.  ( m Y l ) )  =  ( D  .x.  F ) )
6362mpteq2dva 4744 . . . 4  |-  ( (
ph  /\  k  e.  N  /\  l  e.  N
)  ->  ( m  e.  N  |->  ( ( k X m ) 
.x.  ( m Y l ) ) )  =  ( m  e.  N  |->  ( D  .x.  F ) ) )
6463oveq2d 6666 . . 3  |-  ( (
ph  /\  k  e.  N  /\  l  e.  N
)  ->  ( R  gsumg  ( m  e.  N  |->  ( ( k X m )  .x.  ( m Y l ) ) ) )  =  ( R  gsumg  ( m  e.  N  |->  ( D  .x.  F
) ) ) )
6564mpt2eq3dva 6719 . 2  |-  ( ph  ->  ( k  e.  N ,  l  e.  N  |->  ( R  gsumg  ( m  e.  N  |->  ( ( k X m )  .x.  (
m Y l ) ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  ( R  gsumg  ( m  e.  N  |->  ( D 
.x.  F ) ) ) ) )
6610, 29, 653eqtrd 2660 1  |-  ( ph  ->  ( X  .X.  Y
)  =  ( k  e.  N ,  l  e.  N  |->  ( R 
gsumg  ( m  e.  N  |->  ( D  .x.  F
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cotp 4185    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   Basecbs 15857   .rcmulr 15942    gsumg cgsu 16101   maMul cmmul 20189   Mat cmat 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-sra 19172  df-rgmod 19173  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214
This theorem is referenced by:  mat2pmatmul  20536
  Copyright terms: Public domain W3C validator