MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hauspwdom Structured version   Visualization version   Unicode version

Theorem hauspwdom 21304
Description: Simplify the cardinal  A ^ NN of hausmapdom 21303 to  ~P B  =  2 ^ B when  B is an infinite cardinal greater than  A. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypothesis
Ref Expression
hauspwdom.1  |-  X  = 
U. J
Assertion
Ref Expression
hauspwdom  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ~P B )

Proof of Theorem hauspwdom
StepHypRef Expression
1 hauspwdom.1 . . . 4  |-  X  = 
U. J
21hausmapdom 21303 . . 3  |-  ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X
)  ->  ( ( cls `  J ) `  A )  ~<_  ( A  ^m  NN ) )
32adantr 481 . 2  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ( A  ^m  NN ) )
4 simprr 796 . . . 4  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  NN 
~<_  B )
5 1nn 11031 . . . . 5  |-  1  e.  NN
6 noel 3919 . . . . . . 7  |-  -.  1  e.  (/)
7 eleq2 2690 . . . . . . 7  |-  ( NN  =  (/)  ->  ( 1  e.  NN  <->  1  e.  (/) ) )
86, 7mtbiri 317 . . . . . 6  |-  ( NN  =  (/)  ->  -.  1  e.  NN )
98adantr 481 . . . . 5  |-  ( ( NN  =  (/)  /\  A  =  (/) )  ->  -.  1  e.  NN )
105, 9mt2 191 . . . 4  |-  -.  ( NN  =  (/)  /\  A  =  (/) )
11 mapdom2 8131 . . . 4  |-  ( ( NN  ~<_  B  /\  -.  ( NN  =  (/)  /\  A  =  (/) ) )  -> 
( A  ^m  NN )  ~<_  ( A  ^m  B ) )
124, 10, 11sylancl 694 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  NN )  ~<_  ( A  ^m  B ) )
13 sdomdom 7983 . . . . . . 7  |-  ( A 
~<  2o  ->  A  ~<_  2o )
1413adantl 482 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  A  ~<_  2o )
15 mapdom1 8125 . . . . . 6  |-  ( A  ~<_  2o  ->  ( A  ^m  B )  ~<_  ( 2o 
^m  B ) )
1614, 15syl 17 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ( 2o 
^m  B ) )
17 reldom 7961 . . . . . . . . 9  |-  Rel  ~<_
1817brrelex2i 5159 . . . . . . . 8  |-  ( NN  ~<_  B  ->  B  e.  _V )
1918ad2antll 765 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  B  e.  _V )
20 pw2eng 8066 . . . . . . 7  |-  ( B  e.  _V  ->  ~P B  ~~  ( 2o  ^m  B ) )
21 ensym 8005 . . . . . . 7  |-  ( ~P B  ~~  ( 2o 
^m  B )  -> 
( 2o  ^m  B
)  ~~  ~P B
)
2219, 20, 213syl 18 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( 2o  ^m  B
)  ~~  ~P B
)
2322adantr 481 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( 2o  ^m  B )  ~~  ~P B )
24 domentr 8015 . . . . 5  |-  ( ( ( A  ^m  B
)  ~<_  ( 2o  ^m  B )  /\  ( 2o  ^m  B )  ~~  ~P B )  ->  ( A  ^m  B )  ~<_  ~P B )
2516, 23, 24syl2anc 693 . . . 4  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ~P B
)
26 onfin2 8152 . . . . . . . . 9  |-  om  =  ( On  i^i  Fin )
27 inss2 3834 . . . . . . . . 9  |-  ( On 
i^i  Fin )  C_  Fin
2826, 27eqsstri 3635 . . . . . . . 8  |-  om  C_  Fin
29 2onn 7720 . . . . . . . 8  |-  2o  e.  om
3028, 29sselii 3600 . . . . . . 7  |-  2o  e.  Fin
31 simprl 794 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  A  ~<_  ~P B )
3217brrelexi 5158 . . . . . . . 8  |-  ( A  ~<_  ~P B  ->  A  e.  _V )
3331, 32syl 17 . . . . . . 7  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  A  e.  _V )
34 fidomtri 8819 . . . . . . 7  |-  ( ( 2o  e.  Fin  /\  A  e.  _V )  ->  ( 2o  ~<_  A  <->  -.  A  ~<  2o ) )
3530, 33, 34sylancr 695 . . . . . 6  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( 2o  ~<_  A  <->  -.  A  ~<  2o ) )
3635biimpar 502 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  -.  A  ~<  2o )  ->  2o  ~<_  A )
37 numth3 9292 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  e.  dom  card )
3819, 37syl 17 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  B  e.  dom  card )
3938adantr 481 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  B  e.  dom  card )
40 nnenom 12779 . . . . . . . . . 10  |-  NN  ~~  om
4140ensymi 8006 . . . . . . . . 9  |-  om  ~~  NN
42 endomtr 8014 . . . . . . . . 9  |-  ( ( om  ~~  NN  /\  NN 
~<_  B )  ->  om  ~<_  B )
4341, 4, 42sylancr 695 . . . . . . . 8  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  ->  om 
~<_  B )
4443adantr 481 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  om  ~<_  B )
45 simpr 477 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  2o  ~<_  A )
4631adantr 481 . . . . . . 7  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  A  ~<_  ~P B
)
47 mappwen 8935 . . . . . . 7  |-  ( ( ( B  e.  dom  card  /\  om  ~<_  B )  /\  ( 2o  ~<_  A  /\  A  ~<_  ~P B ) )  ->  ( A  ^m  B )  ~~  ~P B )
4839, 44, 45, 46, 47syl22anc 1327 . . . . . 6  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  ( A  ^m  B )  ~~  ~P B )
49 endom 7982 . . . . . 6  |-  ( ( A  ^m  B ) 
~~  ~P B  ->  ( A  ^m  B )  ~<_  ~P B )
5048, 49syl 17 . . . . 5  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  2o  ~<_  A )  ->  ( A  ^m  B )  ~<_  ~P B
)
5136, 50syldan 487 . . . 4  |-  ( ( ( ( J  e. 
Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  /\  -.  A  ~<  2o )  ->  ( A  ^m  B )  ~<_  ~P B
)
5225, 51pm2.61dan 832 . . 3  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  B
)  ~<_  ~P B )
53 domtr 8009 . . 3  |-  ( ( ( A  ^m  NN )  ~<_  ( A  ^m  B )  /\  ( A  ^m  B )  ~<_  ~P B )  ->  ( A  ^m  NN )  ~<_  ~P B )
5412, 52, 53syl2anc 693 . 2  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( A  ^m  NN )  ~<_  ~P B )
55 domtr 8009 . 2  |-  ( ( ( ( cls `  J
) `  A )  ~<_  ( A  ^m  NN )  /\  ( A  ^m  NN )  ~<_  ~P B
)  ->  ( ( cls `  J ) `  A )  ~<_  ~P B
)
563, 54, 55syl2anc 693 1  |-  ( ( ( J  e.  Haus  /\  J  e.  1stc  /\  A  C_  X )  /\  ( A  ~<_  ~P B  /\  NN  ~<_  B ) )  -> 
( ( cls `  J
) `  A )  ~<_  ~P B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888  (class class class)co 6650   omcom 7065   2oc2o 7554    ^m cmap 7857    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761   1c1 9937   NNcn 11020   clsccl 20822   Hauscha 21112   1stcc1stc 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-lm 21033  df-haus 21119  df-1stc 21242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator