MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexdomd Structured version   Visualization version   Unicode version

Theorem mreexdomd 16310
Description: In a Moore system whose closure operator has the exchange property, if  S is independent and contained in the closure of  T, and either  S or  T is finite, then  T dominates  S. This is an immediate consequence of mreexexd 16308. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexdomd.1  |-  ( ph  ->  A  e.  (Moore `  X ) )
mreexdomd.2  |-  N  =  (mrCls `  A )
mreexdomd.3  |-  I  =  (mrInd `  A )
mreexdomd.4  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
mreexdomd.5  |-  ( ph  ->  S  C_  ( N `  T ) )
mreexdomd.6  |-  ( ph  ->  T  C_  X )
mreexdomd.7  |-  ( ph  ->  ( S  e.  Fin  \/  T  e.  Fin )
)
mreexdomd.8  |-  ( ph  ->  S  e.  I )
Assertion
Ref Expression
mreexdomd  |-  ( ph  ->  S  ~<_  T )
Distinct variable groups:    X, s,
y, z    ph, s, y, z    I, s, y, z    N, s, y, z
Allowed substitution hints:    A( y, z, s)    S( y, z, s)    T( y, z, s)

Proof of Theorem mreexdomd
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 mreexdomd.1 . . 3  |-  ( ph  ->  A  e.  (Moore `  X ) )
2 mreexdomd.2 . . 3  |-  N  =  (mrCls `  A )
3 mreexdomd.3 . . 3  |-  I  =  (mrInd `  A )
4 mreexdomd.4 . . 3  |-  ( ph  ->  A. s  e.  ~P  X A. y  e.  X  A. z  e.  (
( N `  (
s  u.  { y } ) )  \ 
( N `  s
) ) y  e.  ( N `  (
s  u.  { z } ) ) )
5 mreexdomd.8 . . . . 5  |-  ( ph  ->  S  e.  I )
63, 1, 5mrissd 16296 . . . 4  |-  ( ph  ->  S  C_  X )
7 dif0 3950 . . . 4  |-  ( X 
\  (/) )  =  X
86, 7syl6sseqr 3652 . . 3  |-  ( ph  ->  S  C_  ( X  \  (/) ) )
9 mreexdomd.6 . . . 4  |-  ( ph  ->  T  C_  X )
109, 7syl6sseqr 3652 . . 3  |-  ( ph  ->  T  C_  ( X  \  (/) ) )
11 mreexdomd.5 . . . 4  |-  ( ph  ->  S  C_  ( N `  T ) )
12 un0 3967 . . . . 5  |-  ( T  u.  (/) )  =  T
1312fveq2i 6194 . . . 4  |-  ( N `
 ( T  u.  (/) ) )  =  ( N `  T )
1411, 13syl6sseqr 3652 . . 3  |-  ( ph  ->  S  C_  ( N `  ( T  u.  (/) ) ) )
15 un0 3967 . . . 4  |-  ( S  u.  (/) )  =  S
1615, 5syl5eqel 2705 . . 3  |-  ( ph  ->  ( S  u.  (/) )  e.  I )
17 mreexdomd.7 . . 3  |-  ( ph  ->  ( S  e.  Fin  \/  T  e.  Fin )
)
181, 2, 3, 4, 8, 10, 14, 16, 17mreexexd 16308 . 2  |-  ( ph  ->  E. i  e.  ~P  T ( S  ~~  i  /\  ( i  u.  (/) )  e.  I
) )
19 simprrl 804 . . 3  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  S  ~~  i
)
20 simprl 794 . . . . 5  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  i  e.  ~P T )
2120elpwid 4170 . . . 4  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  i  C_  T
)
221elfvexd 6222 . . . . . . 7  |-  ( ph  ->  X  e.  _V )
2322, 9ssexd 4805 . . . . . 6  |-  ( ph  ->  T  e.  _V )
24 ssdomg 8001 . . . . . 6  |-  ( T  e.  _V  ->  (
i  C_  T  ->  i  ~<_  T ) )
2523, 24syl 17 . . . . 5  |-  ( ph  ->  ( i  C_  T  ->  i  ~<_  T ) )
2625adantr 481 . . . 4  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  ( i  C_  T  ->  i  ~<_  T ) )
2721, 26mpd 15 . . 3  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  i  ~<_  T )
28 endomtr 8014 . . 3  |-  ( ( S  ~~  i  /\  i  ~<_  T )  ->  S  ~<_  T )
2919, 27, 28syl2anc 693 . 2  |-  ( (
ph  /\  ( i  e.  ~P T  /\  ( S  ~~  i  /\  (
i  u.  (/) )  e.  I ) ) )  ->  S  ~<_  T )
3018, 29rexlimddv 3035 1  |-  ( ph  ->  S  ~<_  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   ` cfv 5888    ~~ cen 7952    ~<_ cdom 7953   Fincfn 7955  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-mre 16246  df-mrc 16247  df-mri 16248
This theorem is referenced by:  mreexfidimd  16311
  Copyright terms: Public domain W3C validator