MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trnei Structured version   Visualization version   Unicode version

Theorem trnei 21696
Description: The trace, over a set  A, of the filter of the neighborhoods of a point  P is a filter iff  P belongs to the closure of  A. (This is trfil2 21691 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trnei  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  ( (
( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A ) ) )

Proof of Theorem trnei
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 topontop 20718 . . . 4  |-  ( J  e.  (TopOn `  Y
)  ->  J  e.  Top )
213ad2ant1 1082 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  J  e.  Top )
3 simp2 1062 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  A  C_  Y )
4 toponuni 20719 . . . . 5  |-  ( J  e.  (TopOn `  Y
)  ->  Y  =  U. J )
543ad2ant1 1082 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  Y  =  U. J )
63, 5sseqtrd 3641 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  A  C_ 
U. J )
7 simp3 1063 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  P  e.  Y )
87, 5eleqtrd 2703 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  P  e.  U. J )
9 eqid 2622 . . . 4  |-  U. J  =  U. J
109neindisj2 20927 . . 3  |-  ( ( J  e.  Top  /\  A  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  A )  <->  A. v  e.  ( ( nei `  J ) `
 { P }
) ( v  i^i 
A )  =/=  (/) ) )
112, 6, 8, 10syl3anc 1326 . 2  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  A. v  e.  ( ( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
12 simp1 1061 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  J  e.  (TopOn `  Y )
)
137snssd 4340 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  { P }  C_  Y )
14 snnzg 4308 . . . . 5  |-  ( P  e.  Y  ->  { P }  =/=  (/) )
15143ad2ant3 1084 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  { P }  =/=  (/) )
16 neifil 21684 . . . 4  |-  ( ( J  e.  (TopOn `  Y )  /\  { P }  C_  Y  /\  { P }  =/=  (/) )  -> 
( ( nei `  J
) `  { P } )  e.  ( Fil `  Y ) )
1712, 13, 15, 16syl3anc 1326 . . 3  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  (
( nei `  J
) `  { P } )  e.  ( Fil `  Y ) )
18 trfil2 21691 . . 3  |-  ( ( ( ( nei `  J
) `  { P } )  e.  ( Fil `  Y )  /\  A  C_  Y
)  ->  ( (
( ( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A )  <->  A. v  e.  (
( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
1917, 3, 18syl2anc 693 . 2  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  (
( ( ( nei `  J ) `  { P } )t  A )  e.  ( Fil `  A )  <->  A. v  e.  (
( nei `  J
) `  { P } ) ( v  i^i  A )  =/=  (/) ) )
2011, 19bitr4d 271 1  |-  ( ( J  e.  (TopOn `  Y )  /\  A  C_  Y  /\  P  e.  Y )  ->  ( P  e.  ( ( cls `  J ) `  A )  <->  ( (
( nei `  J
) `  { P } )t  A )  e.  ( Fil `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   clsccl 20822   neicnei 20901   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-fbas 19743  df-top 20699  df-topon 20716  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-fil 21650
This theorem is referenced by:  flfcntr  21847  cnextfun  21868  cnextfvval  21869  cnextf  21870  cnextcn  21871  cnextfres1  21872  cnextucn  22107  ucnextcn  22108  limcflflem  23644  rrhre  30065
  Copyright terms: Public domain W3C validator