MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Structured version   Visualization version   Unicode version

Theorem nvnd 27543
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1  |-  X  =  ( BaseSet `  U )
nvnd.5  |-  Z  =  ( 0vec `  U
)
nvnd.6  |-  N  =  ( normCV `  U )
nvnd.8  |-  D  =  ( IndMet `  U )
Assertion
Ref Expression
nvnd  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5  |-  X  =  ( BaseSet `  U )
2 nvnd.5 . . . . 5  |-  Z  =  ( 0vec `  U
)
31, 2nvzcl 27489 . . . 4  |-  ( U  e.  NrmCVec  ->  Z  e.  X
)
43adantr 481 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  Z  e.  X )
5 eqid 2622 . . . 4  |-  ( -v
`  U )  =  ( -v `  U
)
6 nvnd.6 . . . 4  |-  N  =  ( normCV `  U )
7 nvnd.8 . . . 4  |-  D  =  ( IndMet `  U )
81, 5, 6, 7imsdval 27541 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
94, 8mpd3an3 1425 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A D Z )  =  ( N `  ( A ( -v `  U ) Z ) ) )
10 eqid 2622 . . . . . 6  |-  ( +v
`  U )  =  ( +v `  U
)
11 eqid 2622 . . . . . 6  |-  ( .sOLD `  U )  =  ( .sOLD `  U )
121, 10, 11, 5nvmval 27497 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  Z  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .sOLD `  U
) Z ) ) )
134, 12mpd3an3 1425 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  ( A ( +v `  U ) ( -u 1 ( .sOLD `  U
) Z ) ) )
14 neg1cn 11124 . . . . . . 7  |-  -u 1  e.  CC
1511, 2nvsz 27493 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  -u 1  e.  CC )  ->  ( -u 1 ( .sOLD `  U ) Z )  =  Z )
1614, 15mpan2 707 . . . . . 6  |-  ( U  e.  NrmCVec  ->  ( -u 1
( .sOLD `  U ) Z )  =  Z )
1716oveq2d 6666 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( A ( +v `  U ) ( -u 1 ( .sOLD `  U
) Z ) )  =  ( A ( +v `  U ) Z ) )
1817adantr 481 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) ( -u
1 ( .sOLD `  U ) Z ) )  =  ( A ( +v `  U
) Z ) )
191, 10, 2nv0rid 27490 . . . 4  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( +v `  U ) Z )  =  A )
2013, 18, 193eqtrd 2660 . . 3  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( A ( -v `  U ) Z )  =  A )
2120fveq2d 6195 . 2  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  ( A
( -v `  U
) Z ) )  =  ( N `  A ) )
229, 21eqtr2d 2657 1  |-  ( ( U  e.  NrmCVec  /\  A  e.  X )  ->  ( N `  A )  =  ( A D Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   1c1 9937   -ucneg 10267   NrmCVeccnv 27439   +vcpv 27440   BaseSetcba 27441   .sOLDcns 27442   0veccn0v 27443   -vcnsb 27444   normCVcnmcv 27445   IndMetcims 27446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456
This theorem is referenced by:  ubthlem1  27726
  Copyright terms: Public domain W3C validator