MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oesuclem Structured version   Visualization version   Unicode version

Theorem oesuclem 7605
Description: Lemma for oesuc 7607. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
oesuclem.1  |-  Lim  X
oesuclem.2  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
Assertion
Ref Expression
oesuclem  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    X( x)

Proof of Theorem oesuclem
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( A  =  (/)  ->  ( A  ^o  suc  B )  =  ( (/)  ^o  suc  B ) )
2 oesuclem.1 . . . . . . . 8  |-  Lim  X
3 limord 5784 . . . . . . . 8  |-  ( Lim 
X  ->  Ord  X )
42, 3ax-mp 5 . . . . . . 7  |-  Ord  X
5 ordelord 5745 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  Ord  B )
64, 5mpan 706 . . . . . 6  |-  ( B  e.  X  ->  Ord  B )
7 0elsuc 7035 . . . . . 6  |-  ( Ord 
B  ->  (/)  e.  suc  B )
86, 7syl 17 . . . . 5  |-  ( B  e.  X  ->  (/)  e.  suc  B )
9 limsuc 7049 . . . . . . 7  |-  ( Lim 
X  ->  ( B  e.  X  <->  suc  B  e.  X
) )
102, 9ax-mp 5 . . . . . 6  |-  ( B  e.  X  <->  suc  B  e.  X )
11 ordelon 5747 . . . . . . . 8  |-  ( ( Ord  X  /\  suc  B  e.  X )  ->  suc  B  e.  On )
124, 11mpan 706 . . . . . . 7  |-  ( suc 
B  e.  X  ->  suc  B  e.  On )
13 oe0m1 7601 . . . . . . 7  |-  ( suc 
B  e.  On  ->  (
(/)  e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
1412, 13syl 17 . . . . . 6  |-  ( suc 
B  e.  X  -> 
( (/)  e.  suc  B  <->  (
(/)  ^o  suc  B )  =  (/) ) )
1510, 14sylbi 207 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
e.  suc  B  <->  ( (/)  ^o  suc  B )  =  (/) ) )
168, 15mpbid 222 . . . 4  |-  ( B  e.  X  ->  ( (/) 
^o  suc  B )  =  (/) )
171, 16sylan9eqr 2678 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  (/) )
18 oveq1 6657 . . . . 5  |-  ( A  =  (/)  ->  ( A  ^o  B )  =  ( (/)  ^o  B ) )
19 id 22 . . . . 5  |-  ( A  =  (/)  ->  A  =  (/) )
2018, 19oveq12d 6668 . . . 4  |-  ( A  =  (/)  ->  ( ( A  ^o  B )  .o  A )  =  ( ( (/)  ^o  B
)  .o  (/) ) )
21 ordelon 5747 . . . . . . 7  |-  ( ( Ord  X  /\  B  e.  X )  ->  B  e.  On )
224, 21mpan 706 . . . . . 6  |-  ( B  e.  X  ->  B  e.  On )
23 oveq2 6658 . . . . . . . . 9  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  =  (
(/)  ^o  (/) ) )
24 oe0m0 7600 . . . . . . . . . 10  |-  ( (/)  ^o  (/) )  =  1o
25 1on 7567 . . . . . . . . . 10  |-  1o  e.  On
2624, 25eqeltri 2697 . . . . . . . . 9  |-  ( (/)  ^o  (/) )  e.  On
2723, 26syl6eqel 2709 . . . . . . . 8  |-  ( B  =  (/)  ->  ( (/)  ^o  B )  e.  On )
2827adantl 482 . . . . . . 7  |-  ( ( B  e.  X  /\  B  =  (/) )  -> 
( (/)  ^o  B )  e.  On )
29 oe0m1 7601 . . . . . . . . . . 11  |-  ( B  e.  On  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3022, 29syl 17 . . . . . . . . . 10  |-  ( B  e.  X  ->  ( (/) 
e.  B  <->  ( (/)  ^o  B
)  =  (/) ) )
3130biimpa 501 . . . . . . . . 9  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  =  (/) )
32 0elon 5778 . . . . . . . . 9  |-  (/)  e.  On
3331, 32syl6eqel 2709 . . . . . . . 8  |-  ( ( B  e.  X  /\  (/) 
e.  B )  -> 
( (/)  ^o  B )  e.  On )
3433adantll 750 . . . . . . 7  |-  ( ( ( B  e.  On  /\  B  e.  X )  /\  (/)  e.  B )  ->  ( (/)  ^o  B
)  e.  On )
3528, 34oe0lem 7593 . . . . . 6  |-  ( ( B  e.  On  /\  B  e.  X )  ->  ( (/)  ^o  B )  e.  On )
3622, 35mpancom 703 . . . . 5  |-  ( B  e.  X  ->  ( (/) 
^o  B )  e.  On )
37 om0 7597 . . . . 5  |-  ( (
(/)  ^o  B )  e.  On  ->  ( ( (/) 
^o  B )  .o  (/) )  =  (/) )
3836, 37syl 17 . . . 4  |-  ( B  e.  X  ->  (
( (/)  ^o  B )  .o  (/) )  =  (/) )
3920, 38sylan9eqr 2678 . . 3  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( ( A  ^o  B )  .o  A
)  =  (/) )
4017, 39eqtr4d 2659 . 2  |-  ( ( B  e.  X  /\  A  =  (/) )  -> 
( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
41 oesuclem.2 . . . 4  |-  ( B  e.  X  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
4241ad2antlr 763 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  suc  B )  =  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( rec (
( x  e.  _V  |->  ( x  .o  A
) ) ,  1o ) `  B )
) )
4310, 12sylbi 207 . . . 4  |-  ( B  e.  X  ->  suc  B  e.  On )
44 oevn0 7595 . . . 4  |-  ( ( ( A  e.  On  /\ 
suc  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
4543, 44sylanl2 683 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  suc  B ) )
46 ovex 6678 . . . . 5  |-  ( A  ^o  B )  e. 
_V
47 oveq1 6657 . . . . . 6  |-  ( x  =  ( A  ^o  B )  ->  (
x  .o  A )  =  ( ( A  ^o  B )  .o  A ) )
48 eqid 2622 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
49 ovex 6678 . . . . . 6  |-  ( ( A  ^o  B )  .o  A )  e. 
_V
5047, 48, 49fvmpt 6282 . . . . 5  |-  ( ( A  ^o  B )  e.  _V  ->  (
( x  e.  _V  |->  ( x  .o  A
) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A ) )
5146, 50ax-mp 5 . . . 4  |-  ( ( x  e.  _V  |->  ( x  .o  A ) ) `  ( A  ^o  B ) )  =  ( ( A  ^o  B )  .o  A )
52 oevn0 7595 . . . . . 6  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5322, 52sylanl2 683 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
5453fveq2d 6195 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( x  e.  _V  |->  ( x  .o  A ) ) `
 ( A  ^o  B ) )  =  ( ( x  e. 
_V  |->  ( x  .o  A ) ) `  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) ) )
5551, 54syl5eqr 2670 . . 3  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( ( A  ^o  B )  .o  A )  =  ( ( x  e.  _V  |->  ( x  .o  A
) ) `  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) ) )
5642, 45, 553eqtr4d 2666 . 2  |-  ( ( ( A  e.  On  /\  B  e.  X )  /\  (/)  e.  A )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B
)  .o  A ) )
5740, 56oe0lem 7593 1  |-  ( ( A  e.  On  /\  B  e.  X )  ->  ( A  ^o  suc  B )  =  ( ( A  ^o  B )  .o  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   ` cfv 5888  (class class class)co 6650   reccrdg 7505   1oc1o 7553    .o comu 7558    ^o coe 7559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-omul 7565  df-oexp 7566
This theorem is referenced by:  oesuc  7607  onesuc  7610
  Copyright terms: Public domain W3C validator