| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oesuclem | Structured version Visualization version Unicode version | ||
| Description: Lemma for oesuc 7607. (Contributed by NM, 31-Dec-2004.) (Revised by Mario Carneiro, 15-Nov-2014.) |
| Ref | Expression |
|---|---|
| oesuclem.1 |
|
| oesuclem.2 |
|
| Ref | Expression |
|---|---|
| oesuclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 6657 |
. . . 4
| |
| 2 | oesuclem.1 |
. . . . . . . 8
| |
| 3 | limord 5784 |
. . . . . . . 8
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
|
| 5 | ordelord 5745 |
. . . . . . 7
| |
| 6 | 4, 5 | mpan 706 |
. . . . . 6
|
| 7 | 0elsuc 7035 |
. . . . . 6
| |
| 8 | 6, 7 | syl 17 |
. . . . 5
|
| 9 | limsuc 7049 |
. . . . . . 7
| |
| 10 | 2, 9 | ax-mp 5 |
. . . . . 6
|
| 11 | ordelon 5747 |
. . . . . . . 8
| |
| 12 | 4, 11 | mpan 706 |
. . . . . . 7
|
| 13 | oe0m1 7601 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | 10, 14 | sylbi 207 |
. . . . 5
|
| 16 | 8, 15 | mpbid 222 |
. . . 4
|
| 17 | 1, 16 | sylan9eqr 2678 |
. . 3
|
| 18 | oveq1 6657 |
. . . . 5
| |
| 19 | id 22 |
. . . . 5
| |
| 20 | 18, 19 | oveq12d 6668 |
. . . 4
|
| 21 | ordelon 5747 |
. . . . . . 7
| |
| 22 | 4, 21 | mpan 706 |
. . . . . 6
|
| 23 | oveq2 6658 |
. . . . . . . . 9
| |
| 24 | oe0m0 7600 |
. . . . . . . . . 10
| |
| 25 | 1on 7567 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | eqeltri 2697 |
. . . . . . . . 9
|
| 27 | 23, 26 | syl6eqel 2709 |
. . . . . . . 8
|
| 28 | 27 | adantl 482 |
. . . . . . 7
|
| 29 | oe0m1 7601 |
. . . . . . . . . . 11
| |
| 30 | 22, 29 | syl 17 |
. . . . . . . . . 10
|
| 31 | 30 | biimpa 501 |
. . . . . . . . 9
|
| 32 | 0elon 5778 |
. . . . . . . . 9
| |
| 33 | 31, 32 | syl6eqel 2709 |
. . . . . . . 8
|
| 34 | 33 | adantll 750 |
. . . . . . 7
|
| 35 | 28, 34 | oe0lem 7593 |
. . . . . 6
|
| 36 | 22, 35 | mpancom 703 |
. . . . 5
|
| 37 | om0 7597 |
. . . . 5
| |
| 38 | 36, 37 | syl 17 |
. . . 4
|
| 39 | 20, 38 | sylan9eqr 2678 |
. . 3
|
| 40 | 17, 39 | eqtr4d 2659 |
. 2
|
| 41 | oesuclem.2 |
. . . 4
| |
| 42 | 41 | ad2antlr 763 |
. . 3
|
| 43 | 10, 12 | sylbi 207 |
. . . 4
|
| 44 | oevn0 7595 |
. . . 4
| |
| 45 | 43, 44 | sylanl2 683 |
. . 3
|
| 46 | ovex 6678 |
. . . . 5
| |
| 47 | oveq1 6657 |
. . . . . 6
| |
| 48 | eqid 2622 |
. . . . . 6
| |
| 49 | ovex 6678 |
. . . . . 6
| |
| 50 | 47, 48, 49 | fvmpt 6282 |
. . . . 5
|
| 51 | 46, 50 | ax-mp 5 |
. . . 4
|
| 52 | oevn0 7595 |
. . . . . 6
| |
| 53 | 22, 52 | sylanl2 683 |
. . . . 5
|
| 54 | 53 | fveq2d 6195 |
. . . 4
|
| 55 | 51, 54 | syl5eqr 2670 |
. . 3
|
| 56 | 42, 45, 55 | 3eqtr4d 2666 |
. 2
|
| 57 | 40, 56 | oe0lem 7593 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-omul 7565 df-oexp 7566 |
| This theorem is referenced by: oesuc 7607 onesuc 7610 |
| Copyright terms: Public domain | W3C validator |