HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthmo Structured version   Visualization version   Unicode version

Theorem pjhthmo 28161
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhthmo  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem pjhthmo
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 865 . . . 4  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  <-> 
( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  /\  (
z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) ) )
2 reeanv 3107 . . . . . 6  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
3 simpll1 1100 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  A  e.  SH )
4 simpll2 1101 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  B  e.  SH )
5 simpll3 1102 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( A  i^i  B
)  =  0H )
6 simplrl 800 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  x  e.  A )
7 simprll 802 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
y  e.  B )
8 simplrr 801 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
z  e.  A )
9 simprlr 803 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  w  e.  B )
10 simprrl 804 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  C  =  ( x  +h  y ) )
11 simprrr 805 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  C  =  ( z  +h  w ) )
1210, 11eqtr3d 2658 . . . . . . . . . 10  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
133, 4, 5, 6, 7, 8, 9, 12shuni 28159 . . . . . . . . 9  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  -> 
( x  =  z  /\  y  =  w ) )
1413simpld 475 . . . . . . . 8  |-  ( ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  (
x  e.  A  /\  z  e.  A )
)  /\  ( (
y  e.  B  /\  w  e.  B )  /\  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) ) ) )  ->  x  =  z )
1514exp32 631 . . . . . . 7  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( y  e.  B  /\  w  e.  B
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
1615rexlimdvv 3037 . . . . . 6  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
172, 16syl5bir 233 . . . . 5  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
1817expimpd 629 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  (
( ( x  e.  A  /\  z  e.  A )  /\  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
191, 18syl5bir 233 . . 3  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  (
( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  /\  (
z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
2019alrimivv 1856 . 2  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  A. x A. z ( ( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  /\  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
21 eleq1 2689 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
22 oveq1 6657 . . . . . . 7  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
2322eqeq2d 2632 . . . . . 6  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
2423rexbidv 3052 . . . . 5  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
25 oveq2 6658 . . . . . . 7  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
2625eqeq2d 2632 . . . . . 6  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
2726cbvrexv 3172 . . . . 5  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
2824, 27syl6bb 276 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
2921, 28anbi12d 747 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  <->  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w
) ) ) )
3029mo4 2517 . 2  |-  ( E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) )  <->  A. x A. z ( ( ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y ) )  /\  ( z  e.  A  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )  ->  x  =  z ) )
3120, 30sylibr 224 1  |-  ( ( A  e.  SH  /\  B  e.  SH  /\  ( A  i^i  B )  =  0H )  ->  E* x ( x  e.  A  /\  E. y  e.  B  C  =  ( x  +h  y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   E.wrex 2913    i^i cin 3573  (class class class)co 6650    +h cva 27777   SHcsh 27785   0Hc0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-hvsub 27828  df-sh 28064  df-ch0 28110
This theorem is referenced by:  pjhtheu  28253  pjpreeq  28257
  Copyright terms: Public domain W3C validator