HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Structured version   Visualization version   Unicode version

Theorem shuni 28159
Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1  |-  ( ph  ->  H  e.  SH )
shuni.2  |-  ( ph  ->  K  e.  SH )
shuni.3  |-  ( ph  ->  ( H  i^i  K
)  =  0H )
shuni.4  |-  ( ph  ->  A  e.  H )
shuni.5  |-  ( ph  ->  B  e.  K )
shuni.6  |-  ( ph  ->  C  e.  H )
shuni.7  |-  ( ph  ->  D  e.  K )
shuni.8  |-  ( ph  ->  ( A  +h  B
)  =  ( C  +h  D ) )
Assertion
Ref Expression
shuni  |-  ( ph  ->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7  |-  ( ph  ->  H  e.  SH )
2 shuni.4 . . . . . . 7  |-  ( ph  ->  A  e.  H )
3 shuni.6 . . . . . . 7  |-  ( ph  ->  C  e.  H )
4 shsubcl 28077 . . . . . . 7  |-  ( ( H  e.  SH  /\  A  e.  H  /\  C  e.  H )  ->  ( A  -h  C
)  e.  H )
51, 2, 3, 4syl3anc 1326 . . . . . 6  |-  ( ph  ->  ( A  -h  C
)  e.  H )
6 shuni.8 . . . . . . . 8  |-  ( ph  ->  ( A  +h  B
)  =  ( C  +h  D ) )
7 shel 28068 . . . . . . . . . 10  |-  ( ( H  e.  SH  /\  A  e.  H )  ->  A  e.  ~H )
81, 2, 7syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  A  e.  ~H )
9 shuni.2 . . . . . . . . . 10  |-  ( ph  ->  K  e.  SH )
10 shuni.5 . . . . . . . . . 10  |-  ( ph  ->  B  e.  K )
11 shel 28068 . . . . . . . . . 10  |-  ( ( K  e.  SH  /\  B  e.  K )  ->  B  e.  ~H )
129, 10, 11syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  B  e.  ~H )
13 shel 28068 . . . . . . . . . 10  |-  ( ( H  e.  SH  /\  C  e.  H )  ->  C  e.  ~H )
141, 3, 13syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  C  e.  ~H )
15 shuni.7 . . . . . . . . . 10  |-  ( ph  ->  D  e.  K )
16 shel 28068 . . . . . . . . . 10  |-  ( ( K  e.  SH  /\  D  e.  K )  ->  D  e.  ~H )
179, 15, 16syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  D  e.  ~H )
18 hvaddsub4 27935 . . . . . . . . 9  |-  ( ( ( A  e.  ~H  /\  B  e.  ~H )  /\  ( C  e.  ~H  /\  D  e.  ~H )
)  ->  ( ( A  +h  B )  =  ( C  +h  D
)  <->  ( A  -h  C )  =  ( D  -h  B ) ) )
198, 12, 14, 17, 18syl22anc 1327 . . . . . . . 8  |-  ( ph  ->  ( ( A  +h  B )  =  ( C  +h  D )  <-> 
( A  -h  C
)  =  ( D  -h  B ) ) )
206, 19mpbid 222 . . . . . . 7  |-  ( ph  ->  ( A  -h  C
)  =  ( D  -h  B ) )
21 shsubcl 28077 . . . . . . . 8  |-  ( ( K  e.  SH  /\  D  e.  K  /\  B  e.  K )  ->  ( D  -h  B
)  e.  K )
229, 15, 10, 21syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( D  -h  B
)  e.  K )
2320, 22eqeltrd 2701 . . . . . 6  |-  ( ph  ->  ( A  -h  C
)  e.  K )
245, 23elind 3798 . . . . 5  |-  ( ph  ->  ( A  -h  C
)  e.  ( H  i^i  K ) )
25 shuni.3 . . . . 5  |-  ( ph  ->  ( H  i^i  K
)  =  0H )
2624, 25eleqtrd 2703 . . . 4  |-  ( ph  ->  ( A  -h  C
)  e.  0H )
27 elch0 28111 . . . 4  |-  ( ( A  -h  C )  e.  0H  <->  ( A  -h  C )  =  0h )
2826, 27sylib 208 . . 3  |-  ( ph  ->  ( A  -h  C
)  =  0h )
29 hvsubeq0 27925 . . . 4  |-  ( ( A  e.  ~H  /\  C  e.  ~H )  ->  ( ( A  -h  C )  =  0h  <->  A  =  C ) )
308, 14, 29syl2anc 693 . . 3  |-  ( ph  ->  ( ( A  -h  C )  =  0h  <->  A  =  C ) )
3128, 30mpbid 222 . 2  |-  ( ph  ->  A  =  C )
3220, 28eqtr3d 2658 . . . 4  |-  ( ph  ->  ( D  -h  B
)  =  0h )
33 hvsubeq0 27925 . . . . 5  |-  ( ( D  e.  ~H  /\  B  e.  ~H )  ->  ( ( D  -h  B )  =  0h  <->  D  =  B ) )
3417, 12, 33syl2anc 693 . . . 4  |-  ( ph  ->  ( ( D  -h  B )  =  0h  <->  D  =  B ) )
3532, 34mpbid 222 . . 3  |-  ( ph  ->  D  =  B )
3635eqcomd 2628 . 2  |-  ( ph  ->  B  =  D )
3731, 36jca 554 1  |-  ( ph  ->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573  (class class class)co 6650   ~Hchil 27776    +h cva 27777   0hc0v 27781    -h cmv 27782   SHcsh 27785   0Hc0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-hvsub 27828  df-sh 28064  df-ch0 28110
This theorem is referenced by:  chocunii  28160  pjhthmo  28161  chscllem3  28498
  Copyright terms: Public domain W3C validator