HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjpreeq Structured version   Visualization version   Unicode version

Theorem pjpreeq 28257
Description: Equality with a projection. This version of pjeq 28258 does not assume the Axiom of Choice via pjhth 28252. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjpreeq  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( B  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( B  +h  x ) ) ) )
Distinct variable groups:    x, H    x, A    x, B

Proof of Theorem pjpreeq
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 chsh 28081 . . . . . . . 8  |-  ( H  e.  CH  ->  H  e.  SH )
2 shocsh 28143 . . . . . . . . 9  |-  ( H  e.  SH  ->  ( _|_ `  H )  e.  SH )
31, 2syl 17 . . . . . . . 8  |-  ( H  e.  CH  ->  ( _|_ `  H )  e.  SH )
4 shsel 28173 . . . . . . . 8  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH )  -> 
( A  e.  ( H  +H  ( _|_ `  H ) )  <->  E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
51, 3, 4syl2anc 693 . . . . . . 7  |-  ( H  e.  CH  ->  ( A  e.  ( H  +H  ( _|_ `  H
) )  <->  E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
65biimpa 501 . . . . . 6  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )
7 ocin 28155 . . . . . . . . 9  |-  ( H  e.  SH  ->  ( H  i^i  ( _|_ `  H
) )  =  0H )
81, 7syl 17 . . . . . . . 8  |-  ( H  e.  CH  ->  ( H  i^i  ( _|_ `  H
) )  =  0H )
9 pjhthmo 28161 . . . . . . . 8  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH  /\  ( H  i^i  ( _|_ `  H
) )  =  0H )  ->  E* y
( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) ) )
101, 3, 8, 9syl3anc 1326 . . . . . . 7  |-  ( H  e.  CH  ->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
1110adantr 481 . . . . . 6  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
12 reu5 3159 . . . . . . 7  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x )  /\  E* y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
13 df-rmo 2920 . . . . . . . 8  |-  ( E* y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) ) )
1413anbi2i 730 . . . . . . 7  |-  ( ( E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x )  /\  E* y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  /\  E* y
( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) ) ) )
1512, 14bitri 264 . . . . . 6  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  <->  ( E. y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x )  /\  E* y ( y  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) ) ) )
166, 11, 15sylanbrc 698 . . . . 5  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )
17 riotacl 6625 . . . . 5  |-  ( E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
)  ->  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  e.  H )
1816, 17syl 17 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  e.  H )
19 eleq1 2689 . . . 4  |-  ( (
iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B  ->  ( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  e.  H  <->  B  e.  H ) )
2018, 19syl5ibcom 235 . . 3  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B  ->  B  e.  H )
)
2120pm4.71rd 667 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B  <->  ( B  e.  H  /\  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x
) )  =  B ) ) )
22 shsss 28172 . . . . . 6  |-  ( ( H  e.  SH  /\  ( _|_ `  H )  e.  SH )  -> 
( H  +H  ( _|_ `  H ) ) 
C_  ~H )
231, 3, 22syl2anc 693 . . . . 5  |-  ( H  e.  CH  ->  ( H  +H  ( _|_ `  H
) )  C_  ~H )
2423sselda 3603 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  ->  A  e.  ~H )
25 pjhval 28256 . . . 4  |-  ( ( H  e.  CH  /\  A  e.  ~H )  ->  ( ( proj h `  H ) `  A
)  =  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
2624, 25syldan 487 . . 3  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( proj h `  H ) `  A
)  =  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) ) )
2726eqeq1d 2624 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
28 id 22 . . . 4  |-  ( B  e.  H  ->  B  e.  H )
29 oveq1 6657 . . . . . . 7  |-  ( y  =  B  ->  (
y  +h  x )  =  ( B  +h  x ) )
3029eqeq2d 2632 . . . . . 6  |-  ( y  =  B  ->  ( A  =  ( y  +h  x )  <->  A  =  ( B  +h  x
) ) )
3130rexbidv 3052 . . . . 5  |-  ( y  =  B  ->  ( E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x )  <->  E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x ) ) )
3231riota2 6633 . . . 4  |-  ( ( B  e.  H  /\  E! y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  -> 
( E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x )  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
3328, 16, 32syl2anr 495 . . 3  |-  ( ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  /\  B  e.  H )  ->  ( E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x )  <-> 
( iota_ y  e.  H  E. x  e.  ( _|_ `  H ) A  =  ( y  +h  x ) )  =  B ) )
3433pm5.32da 673 . 2  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( B  e.  H  /\  E. x  e.  ( _|_ `  H
) A  =  ( B  +h  x ) )  <->  ( B  e.  H  /\  ( iota_ y  e.  H  E. x  e.  ( _|_ `  H
) A  =  ( y  +h  x ) )  =  B ) ) )
3521, 27, 343bitr4d 300 1  |-  ( ( H  e.  CH  /\  A  e.  ( H  +H  ( _|_ `  H
) ) )  -> 
( ( ( proj h `  H ) `  A )  =  B  <-> 
( B  e.  H  /\  E. x  e.  ( _|_ `  H ) A  =  ( B  +h  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E*wmo 2471   E.wrex 2913   E!wreu 2914   E*wrmo 2915    i^i cin 3573    C_ wss 3574   ` cfv 5888   iota_crio 6610  (class class class)co 6650   ~Hchil 27776    +h cva 27777   SHcsh 27785   CHcch 27786   _|_cort 27787    +H cph 27788   0Hc0h 27792   proj hcpjh 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-ch 28078  df-oc 28109  df-ch0 28110  df-shs 28167  df-pjh 28254
This theorem is referenced by:  pjeq  28258  pjpjpre  28278  chscllem1  28496  chscllem2  28497  chscllem3  28498
  Copyright terms: Public domain W3C validator