MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43lem Structured version   Visualization version   Unicode version

Theorem pm54.43lem 8825
Description: In Theorem *54.43 of [WhiteheadRussell] p. 360, the number 1 is defined as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 8794), so that their  A  e.  1 means, in our notation,  A  e.  {
x  |  ( card `  x )  =  1o }. Here we show that this is equivalent to  A  ~~  1o so that we can use the latter more convenient notation in pm54.43 8826. (Contributed by NM, 4-Nov-2013.)
Assertion
Ref Expression
pm54.43lem  |-  ( A 
~~  1o  <->  A  e.  { x  |  ( card `  x
)  =  1o }
)
Distinct variable group:    x, A

Proof of Theorem pm54.43lem
StepHypRef Expression
1 carden2b 8793 . . . 4  |-  ( A 
~~  1o  ->  ( card `  A )  =  (
card `  1o )
)
2 1onn 7719 . . . . 5  |-  1o  e.  om
3 cardnn 8789 . . . . 5  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
42, 3ax-mp 5 . . . 4  |-  ( card `  1o )  =  1o
51, 4syl6eq 2672 . . 3  |-  ( A 
~~  1o  ->  ( card `  A )  =  1o )
64eqeq2i 2634 . . . . 5  |-  ( (
card `  A )  =  ( card `  1o ) 
<->  ( card `  A
)  =  1o )
76biimpri 218 . . . 4  |-  ( (
card `  A )  =  1o  ->  ( card `  A )  =  (
card `  1o )
)
8 1n0 7575 . . . . . . . 8  |-  1o  =/=  (/)
98neii 2796 . . . . . . 7  |-  -.  1o  =  (/)
10 eqeq1 2626 . . . . . . 7  |-  ( (
card `  A )  =  1o  ->  ( (
card `  A )  =  (/)  <->  1o  =  (/) ) )
119, 10mtbiri 317 . . . . . 6  |-  ( (
card `  A )  =  1o  ->  -.  ( card `  A )  =  (/) )
12 ndmfv 6218 . . . . . 6  |-  ( -.  A  e.  dom  card  -> 
( card `  A )  =  (/) )
1311, 12nsyl2 142 . . . . 5  |-  ( (
card `  A )  =  1o  ->  A  e. 
dom  card )
14 1on 7567 . . . . . 6  |-  1o  e.  On
15 onenon 8775 . . . . . 6  |-  ( 1o  e.  On  ->  1o  e.  dom  card )
1614, 15ax-mp 5 . . . . 5  |-  1o  e.  dom  card
17 carden2 8813 . . . . 5  |-  ( ( A  e.  dom  card  /\  1o  e.  dom  card )  ->  ( ( card `  A )  =  (
card `  1o )  <->  A 
~~  1o ) )
1813, 16, 17sylancl 694 . . . 4  |-  ( (
card `  A )  =  1o  ->  ( (
card `  A )  =  ( card `  1o ) 
<->  A  ~~  1o ) )
197, 18mpbid 222 . . 3  |-  ( (
card `  A )  =  1o  ->  A  ~~  1o )
205, 19impbii 199 . 2  |-  ( A 
~~  1o  <->  ( card `  A
)  =  1o )
21 elex 3212 . . . 4  |-  ( A  e.  dom  card  ->  A  e.  _V )
2213, 21syl 17 . . 3  |-  ( (
card `  A )  =  1o  ->  A  e. 
_V )
23 fveq2 6191 . . . 4  |-  ( x  =  A  ->  ( card `  x )  =  ( card `  A
) )
2423eqeq1d 2624 . . 3  |-  ( x  =  A  ->  (
( card `  x )  =  1o  <->  ( card `  A
)  =  1o ) )
2522, 24elab3 3358 . 2  |-  ( A  e.  { x  |  ( card `  x
)  =  1o }  <->  (
card `  A )  =  1o )
2620, 25bitr4i 267 1  |-  ( A 
~~  1o  <->  A  e.  { x  |  ( card `  x
)  =  1o }
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200   (/)c0 3915   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888   omcom 7065   1oc1o 7553    ~~ cen 7952   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator