MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfconj Structured version   Visualization version   Unicode version

Theorem pmtrfconj 17886
Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
Assertion
Ref Expression
pmtrfconj  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
)  e.  R )

Proof of Theorem pmtrfconj
StepHypRef Expression
1 pmtrrn.t . . . . 5  |-  T  =  (pmTrsp `  D )
2 pmtrrn.r . . . . 5  |-  R  =  ran  T
31, 2pmtrfb 17885 . . . 4  |-  ( F  e.  R  <->  ( D  e.  _V  /\  F : D
-1-1-onto-> D  /\  dom  ( F 
\  _I  )  ~~  2o ) )
43simp1bi 1076 . . 3  |-  ( F  e.  R  ->  D  e.  _V )
54adantr 481 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  D  e.  _V )
6 simpr 477 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  G : D -1-1-onto-> D )
71, 2pmtrff1o 17883 . . . . 5  |-  ( F  e.  R  ->  F : D -1-1-onto-> D )
87adantr 481 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  F : D -1-1-onto-> D )
9 f1oco 6159 . . . 4  |-  ( ( G : D -1-1-onto-> D  /\  F : D -1-1-onto-> D )  ->  ( G  o.  F ) : D -1-1-onto-> D )
106, 8, 9syl2anc 693 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  ( G  o.  F ) : D -1-1-onto-> D )
11 f1ocnv 6149 . . . 4  |-  ( G : D -1-1-onto-> D  ->  `' G : D -1-1-onto-> D )
1211adantl 482 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  `' G : D -1-1-onto-> D )
13 f1oco 6159 . . 3  |-  ( ( ( G  o.  F
) : D -1-1-onto-> D  /\  `' G : D -1-1-onto-> D )  ->  ( ( G  o.  F )  o.  `' G ) : D -1-1-onto-> D
)
1410, 12, 13syl2anc 693 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
) : D -1-1-onto-> D )
15 f1of 6137 . . . . . . 7  |-  ( F : D -1-1-onto-> D  ->  F : D
--> D )
167, 15syl 17 . . . . . 6  |-  ( F  e.  R  ->  F : D --> D )
1716adantr 481 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  F : D --> D )
18 f1omvdconj 17866 . . . . 5  |-  ( ( F : D --> D  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  =  ( G " dom  ( F  \  _I  ) ) )
1917, 6, 18syl2anc 693 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  =  ( G " dom  ( F  \  _I  ) ) )
20 f1of1 6136 . . . . . 6  |-  ( G : D -1-1-onto-> D  ->  G : D -1-1-> D )
2120adantl 482 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  G : D -1-1-> D )
22 difss 3737 . . . . . . . 8  |-  ( F 
\  _I  )  C_  F
23 dmss 5323 . . . . . . . 8  |-  ( ( F  \  _I  )  C_  F  ->  dom  ( F 
\  _I  )  C_  dom  F )
2422, 23ax-mp 5 . . . . . . 7  |-  dom  ( F  \  _I  )  C_  dom  F
25 fdm 6051 . . . . . . 7  |-  ( F : D --> D  ->  dom  F  =  D )
2624, 25syl5sseq 3653 . . . . . 6  |-  ( F : D --> D  ->  dom  ( F  \  _I  )  C_  D )
2717, 26syl 17 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  C_  D )
285, 27ssexd 4805 . . . . 5  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  e.  _V )
29 f1imaeng 8016 . . . . 5  |-  ( ( G : D -1-1-> D  /\  dom  ( F  \  _I  )  C_  D  /\  dom  ( F  \  _I  )  e.  _V )  ->  ( G " dom  ( F  \  _I  )
)  ~~  dom  ( F 
\  _I  ) )
3021, 27, 28, 29syl3anc 1326 . . . 4  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  ( G " dom  ( F 
\  _I  ) ) 
~~  dom  ( F  \  _I  ) )
3119, 30eqbrtrd 4675 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  dom  ( F 
\  _I  ) )
323simp3bi 1078 . . . 4  |-  ( F  e.  R  ->  dom  ( F  \  _I  )  ~~  2o )
3332adantr 481 . . 3  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( F  \  _I  )  ~~  2o )
34 entr 8008 . . 3  |-  ( ( dom  ( ( ( G  o.  F )  o.  `' G ) 
\  _I  )  ~~  dom  ( F  \  _I  )  /\  dom  ( F 
\  _I  )  ~~  2o )  ->  dom  (
( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o )
3531, 33, 34syl2anc 693 . 2  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  dom  ( ( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o )
361, 2pmtrfb 17885 . 2  |-  ( ( ( G  o.  F
)  o.  `' G
)  e.  R  <->  ( D  e.  _V  /\  ( ( G  o.  F )  o.  `' G ) : D -1-1-onto-> D  /\  dom  (
( ( G  o.  F )  o.  `' G )  \  _I  )  ~~  2o ) )
375, 14, 35, 36syl3anbrc 1246 1  |-  ( ( F  e.  R  /\  G : D -1-1-onto-> D )  ->  (
( G  o.  F
)  o.  `' G
)  e.  R )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    \ cdif 3571    C_ wss 3574   class class class wbr 4653    _I cid 5023   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    o. ccom 5118   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  psgnunilem1  17913
  Copyright terms: Public domain W3C validator