MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtr3ncomlem1 Structured version   Visualization version   Unicode version

Theorem pmtr3ncomlem1 17893
Description: Lemma 1 for pmtr3ncom 17895. (Contributed by AV, 17-Mar-2018.)
Hypotheses
Ref Expression
pmtr3ncom.t  |-  T  =  (pmTrsp `  D )
pmtr3ncom.f  |-  F  =  ( T `  { X ,  Y }
)
pmtr3ncom.g  |-  G  =  ( T `  { Y ,  Z }
)
Assertion
Ref Expression
pmtr3ncomlem1  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( G  o.  F
) `  X )  =/=  ( ( F  o.  G ) `  X
) )

Proof of Theorem pmtr3ncomlem1
StepHypRef Expression
1 necom 2847 . . . . 5  |-  ( Y  =/=  Z  <->  Z  =/=  Y )
21biimpi 206 . . . 4  |-  ( Y  =/=  Z  ->  Z  =/=  Y )
323ad2ant3 1084 . . 3  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  Z  =/=  Y )
433ad2ant3 1084 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Z  =/=  Y )
5 simp1 1061 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  D  e.  V )
6 simp1 1061 . . . . . . . . . 10  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  X  e.  D )
763ad2ant2 1083 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  X  e.  D )
8 simp2 1062 . . . . . . . . . 10  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  Y  e.  D )
983ad2ant2 1083 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Y  e.  D )
10 prssi 4353 . . . . . . . . 9  |-  ( ( X  e.  D  /\  Y  e.  D )  ->  { X ,  Y }  C_  D )
117, 9, 10syl2anc 693 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { X ,  Y }  C_  D
)
12 simp1 1061 . . . . . . . . . . 11  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
13123ad2ant3 1084 . . . . . . . . . 10  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  X  =/=  Y )
147, 9, 133jca 1242 . . . . . . . . 9  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y ) )
15 pr2nelem 8827 . . . . . . . . 9  |-  ( ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y )  ->  { X ,  Y }  ~~  2o )
1614, 15syl 17 . . . . . . . 8  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { X ,  Y }  ~~  2o )
175, 11, 163jca 1242 . . . . . . 7  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( D  e.  V  /\  { X ,  Y }  C_  D  /\  { X ,  Y }  ~~  2o ) )
18 pmtr3ncom.t . . . . . . . 8  |-  T  =  (pmTrsp `  D )
1918pmtrf 17875 . . . . . . 7  |-  ( ( D  e.  V  /\  { X ,  Y }  C_  D  /\  { X ,  Y }  ~~  2o )  ->  ( T `  { X ,  Y }
) : D --> D )
2017, 19syl 17 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( T `  { X ,  Y } ) : D --> D )
21 pmtr3ncom.f . . . . . . 7  |-  F  =  ( T `  { X ,  Y }
)
2221feq1i 6036 . . . . . 6  |-  ( F : D --> D  <->  ( T `  { X ,  Y } ) : D --> D )
2320, 22sylibr 224 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  F : D --> D )
24 ffn 6045 . . . . 5  |-  ( F : D --> D  ->  F  Fn  D )
2523, 24syl 17 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  F  Fn  D )
26 fvco2 6273 . . . 4  |-  ( ( F  Fn  D  /\  X  e.  D )  ->  ( ( G  o.  F ) `  X
)  =  ( G `
 ( F `  X ) ) )
2725, 7, 26syl2anc 693 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( G  o.  F
) `  X )  =  ( G `  ( F `  X ) ) )
2821fveq1i 6192 . . . . 5  |-  ( F `
 X )  =  ( ( T `  { X ,  Y }
) `  X )
2918pmtrprfv 17873 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  X  =/=  Y
) )  ->  (
( T `  { X ,  Y }
) `  X )  =  Y )
305, 14, 29syl2anc 693 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { X ,  Y }
) `  X )  =  Y )
3128, 30syl5eq 2668 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( F `  X )  =  Y )
3231fveq2d 6195 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( G `  ( F `  X ) )  =  ( G `  Y
) )
33 pmtr3ncom.g . . . . 5  |-  G  =  ( T `  { Y ,  Z }
)
3433fveq1i 6192 . . . 4  |-  ( G `
 Y )  =  ( ( T `  { Y ,  Z }
) `  Y )
35 simp3 1063 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  Z  e.  D )
36353ad2ant2 1083 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Z  e.  D )
37 simp3 1063 . . . . . . 7  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  Y  =/=  Z )
38373ad2ant3 1084 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  Y  =/=  Z )
399, 36, 383jca 1242 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( Y  e.  D  /\  Z  e.  D  /\  Y  =/=  Z ) )
4018pmtrprfv 17873 . . . . 5  |-  ( ( D  e.  V  /\  ( Y  e.  D  /\  Z  e.  D  /\  Y  =/=  Z
) )  ->  (
( T `  { Y ,  Z }
) `  Y )  =  Z )
415, 39, 40syl2anc 693 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { Y ,  Z }
) `  Y )  =  Z )
4234, 41syl5eq 2668 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( G `  Y )  =  Z )
4327, 32, 423eqtrd 2660 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( G  o.  F
) `  X )  =  Z )
44 prssi 4353 . . . . . . . . 9  |-  ( ( Y  e.  D  /\  Z  e.  D )  ->  { Y ,  Z }  C_  D )
458, 35, 44syl2anc 693 . . . . . . . 8  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  { Y ,  Z }  C_  D )
46453ad2ant2 1083 . . . . . . 7  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { Y ,  Z }  C_  D
)
47 pr2nelem 8827 . . . . . . . 8  |-  ( ( Y  e.  D  /\  Z  e.  D  /\  Y  =/=  Z )  ->  { Y ,  Z }  ~~  2o )
4839, 47syl 17 . . . . . . 7  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  { Y ,  Z }  ~~  2o )
495, 46, 483jca 1242 . . . . . 6  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( D  e.  V  /\  { Y ,  Z }  C_  D  /\  { Y ,  Z }  ~~  2o ) )
5018pmtrf 17875 . . . . . . 7  |-  ( ( D  e.  V  /\  { Y ,  Z }  C_  D  /\  { Y ,  Z }  ~~  2o )  ->  ( T `  { Y ,  Z }
) : D --> D )
5133feq1i 6036 . . . . . . 7  |-  ( G : D --> D  <->  ( T `  { Y ,  Z } ) : D --> D )
5250, 51sylibr 224 . . . . . 6  |-  ( ( D  e.  V  /\  { Y ,  Z }  C_  D  /\  { Y ,  Z }  ~~  2o )  ->  G : D --> D )
5349, 52syl 17 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  G : D --> D )
54 ffn 6045 . . . . 5  |-  ( G : D --> D  ->  G  Fn  D )
5553, 54syl 17 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  G  Fn  D )
56 fvco2 6273 . . . 4  |-  ( ( G  Fn  D  /\  X  e.  D )  ->  ( ( F  o.  G ) `  X
)  =  ( F `
 ( G `  X ) ) )
5755, 7, 56syl2anc 693 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( F  o.  G
) `  X )  =  ( F `  ( G `  X ) ) )
5833fveq1i 6192 . . . . 5  |-  ( G `
 X )  =  ( ( T `  { Y ,  Z }
) `  X )
59 id 22 . . . . . 6  |-  ( D  e.  V  ->  D  e.  V )
60 3anrot 1043 . . . . . . 7  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  <->  ( Y  e.  D  /\  Z  e.  D  /\  X  e.  D )
)
6160biimpi 206 . . . . . 6  |-  ( ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D )  ->  ( Y  e.  D  /\  Z  e.  D  /\  X  e.  D
) )
62 3anrot 1043 . . . . . . 7  |-  ( ( Y  =/=  Z  /\  Y  =/=  X  /\  Z  =/=  X )  <->  ( Y  =/=  X  /\  Z  =/= 
X  /\  Y  =/=  Z ) )
63 necom 2847 . . . . . . . 8  |-  ( Y  =/=  X  <->  X  =/=  Y )
64 necom 2847 . . . . . . . 8  |-  ( Z  =/=  X  <->  X  =/=  Z )
65 biid 251 . . . . . . . 8  |-  ( Y  =/=  Z  <->  Y  =/=  Z )
6663, 64, 653anbi123i 1251 . . . . . . 7  |-  ( ( Y  =/=  X  /\  Z  =/=  X  /\  Y  =/=  Z )  <->  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )
6762, 66sylbbr 226 . . . . . 6  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  ( Y  =/=  Z  /\  Y  =/=  X  /\  Z  =/= 
X ) )
6818pmtrprfv3 17874 . . . . . 6  |-  ( ( D  e.  V  /\  ( Y  e.  D  /\  Z  e.  D  /\  X  e.  D
)  /\  ( Y  =/=  Z  /\  Y  =/= 
X  /\  Z  =/=  X ) )  ->  (
( T `  { Y ,  Z }
) `  X )  =  X )
6959, 61, 67, 68syl3an 1368 . . . . 5  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( T `  { Y ,  Z }
) `  X )  =  X )
7058, 69syl5eq 2668 . . . 4  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( G `  X )  =  X )
7170fveq2d 6195 . . 3  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  ( F `  ( G `  X ) )  =  ( F `  X
) )
7257, 71, 313eqtrd 2660 . 2  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( F  o.  G
) `  X )  =  Y )
734, 43, 723netr4d 2871 1  |-  ( ( D  e.  V  /\  ( X  e.  D  /\  Y  e.  D  /\  Z  e.  D
)  /\  ( X  =/=  Y  /\  X  =/= 
Z  /\  Y  =/=  Z ) )  ->  (
( G  o.  F
) `  X )  =/=  ( ( F  o.  G ) `  X
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    C_ wss 3574   {cpr 4179   class class class wbr 4653    o. ccom 5118    Fn wfn 5883   -->wf 5884   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtr3ncomlem2  17894
  Copyright terms: Public domain W3C validator