| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remullem | Structured version Visualization version Unicode version | ||
| Description: Lemma for remul 13869, immul 13876, and cjmul 13882. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
| Ref | Expression |
|---|---|
| remullem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 13856 |
. . . . . 6
| |
| 2 | replim 13856 |
. . . . . 6
| |
| 3 | 1, 2 | oveqan12d 6669 |
. . . . 5
|
| 4 | recl 13850 |
. . . . . . . . 9
| |
| 5 | 4 | adantr 481 |
. . . . . . . 8
|
| 6 | 5 | recnd 10068 |
. . . . . . 7
|
| 7 | ax-icn 9995 |
. . . . . . . 8
| |
| 8 | imcl 13851 |
. . . . . . . . . 10
| |
| 9 | 8 | adantr 481 |
. . . . . . . . 9
|
| 10 | 9 | recnd 10068 |
. . . . . . . 8
|
| 11 | mulcl 10020 |
. . . . . . . 8
| |
| 12 | 7, 10, 11 | sylancr 695 |
. . . . . . 7
|
| 13 | 6, 12 | addcld 10059 |
. . . . . 6
|
| 14 | recl 13850 |
. . . . . . . 8
| |
| 15 | 14 | adantl 482 |
. . . . . . 7
|
| 16 | 15 | recnd 10068 |
. . . . . 6
|
| 17 | imcl 13851 |
. . . . . . . . 9
| |
| 18 | 17 | adantl 482 |
. . . . . . . 8
|
| 19 | 18 | recnd 10068 |
. . . . . . 7
|
| 20 | mulcl 10020 |
. . . . . . 7
| |
| 21 | 7, 19, 20 | sylancr 695 |
. . . . . 6
|
| 22 | 13, 16, 21 | adddid 10064 |
. . . . 5
|
| 23 | 6, 12, 16 | adddird 10065 |
. . . . . . 7
|
| 24 | 6, 12, 21 | adddird 10065 |
. . . . . . 7
|
| 25 | 23, 24 | oveq12d 6668 |
. . . . . 6
|
| 26 | 5, 15 | remulcld 10070 |
. . . . . . . 8
|
| 27 | 26 | recnd 10068 |
. . . . . . 7
|
| 28 | 12, 21 | mulcld 10060 |
. . . . . . 7
|
| 29 | 12, 16 | mulcld 10060 |
. . . . . . 7
|
| 30 | 6, 21 | mulcld 10060 |
. . . . . . 7
|
| 31 | 27, 28, 29, 30 | add42d 10265 |
. . . . . 6
|
| 32 | 7 | a1i 11 |
. . . . . . . . . . 11
|
| 33 | 32, 10, 32, 19 | mul4d 10248 |
. . . . . . . . . 10
|
| 34 | ixi 10656 |
. . . . . . . . . . . 12
| |
| 35 | 34 | oveq1i 6660 |
. . . . . . . . . . 11
|
| 36 | 9, 18 | remulcld 10070 |
. . . . . . . . . . . . 13
|
| 37 | 36 | recnd 10068 |
. . . . . . . . . . . 12
|
| 38 | 37 | mulm1d 10482 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | syl5eq 2668 |
. . . . . . . . . 10
|
| 40 | 33, 39 | eqtrd 2656 |
. . . . . . . . 9
|
| 41 | 40 | oveq2d 6666 |
. . . . . . . 8
|
| 42 | 27, 37 | negsubd 10398 |
. . . . . . . 8
|
| 43 | 41, 42 | eqtrd 2656 |
. . . . . . 7
|
| 44 | 9, 15 | remulcld 10070 |
. . . . . . . . . . 11
|
| 45 | 44 | recnd 10068 |
. . . . . . . . . 10
|
| 46 | mulcl 10020 |
. . . . . . . . . 10
| |
| 47 | 7, 45, 46 | sylancr 695 |
. . . . . . . . 9
|
| 48 | 5, 18 | remulcld 10070 |
. . . . . . . . . . 11
|
| 49 | 48 | recnd 10068 |
. . . . . . . . . 10
|
| 50 | mulcl 10020 |
. . . . . . . . . 10
| |
| 51 | 7, 49, 50 | sylancr 695 |
. . . . . . . . 9
|
| 52 | 47, 51 | addcomd 10238 |
. . . . . . . 8
|
| 53 | 32, 10, 16 | mulassd 10063 |
. . . . . . . . 9
|
| 54 | 6, 32, 19 | mul12d 10245 |
. . . . . . . . 9
|
| 55 | 53, 54 | oveq12d 6668 |
. . . . . . . 8
|
| 56 | 32, 49, 45 | adddid 10064 |
. . . . . . . 8
|
| 57 | 52, 55, 56 | 3eqtr4d 2666 |
. . . . . . 7
|
| 58 | 43, 57 | oveq12d 6668 |
. . . . . 6
|
| 59 | 25, 31, 58 | 3eqtr2d 2662 |
. . . . 5
|
| 60 | 3, 22, 59 | 3eqtrd 2660 |
. . . 4
|
| 61 | 60 | fveq2d 6195 |
. . 3
|
| 62 | 26, 36 | resubcld 10458 |
. . . 4
|
| 63 | 48, 44 | readdcld 10069 |
. . . 4
|
| 64 | crre 13854 |
. . . 4
| |
| 65 | 62, 63, 64 | syl2anc 693 |
. . 3
|
| 66 | 61, 65 | eqtrd 2656 |
. 2
|
| 67 | 60 | fveq2d 6195 |
. . 3
|
| 68 | crim 13855 |
. . . 4
| |
| 69 | 62, 63, 68 | syl2anc 693 |
. . 3
|
| 70 | 67, 69 | eqtrd 2656 |
. 2
|
| 71 | mulcl 10020 |
. . . 4
| |
| 72 | remim 13857 |
. . . 4
| |
| 73 | 71, 72 | syl 17 |
. . 3
|
| 74 | remim 13857 |
. . . . 5
| |
| 75 | remim 13857 |
. . . . 5
| |
| 76 | 74, 75 | oveqan12d 6669 |
. . . 4
|
| 77 | 16, 21 | subcld 10392 |
. . . . 5
|
| 78 | 6, 12, 77 | subdird 10487 |
. . . 4
|
| 79 | 27, 30, 29, 28 | subadd4d 10440 |
. . . . 5
|
| 80 | 6, 16, 21 | subdid 10486 |
. . . . . 6
|
| 81 | 12, 16, 21 | subdid 10486 |
. . . . . 6
|
| 82 | 80, 81 | oveq12d 6668 |
. . . . 5
|
| 83 | 65, 61, 43 | 3eqtr4d 2666 |
. . . . . 6
|
| 84 | 70 | oveq2d 6666 |
. . . . . . 7
|
| 85 | 54, 53 | oveq12d 6668 |
. . . . . . 7
|
| 86 | 56, 84, 85 | 3eqtr4d 2666 |
. . . . . 6
|
| 87 | 83, 86 | oveq12d 6668 |
. . . . 5
|
| 88 | 79, 82, 87 | 3eqtr4d 2666 |
. . . 4
|
| 89 | 76, 78, 88 | 3eqtrd 2660 |
. . 3
|
| 90 | 73, 89 | eqtr4d 2659 |
. 2
|
| 91 | 66, 70, 90 | 3jca 1242 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 |
| This theorem is referenced by: remul 13869 immul 13876 cjmul 13882 |
| Copyright terms: Public domain | W3C validator |