| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crre | Structured version Visualization version Unicode version | ||
| Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
| Ref | Expression |
|---|---|
| crre |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 10026 |
. . . 4
| |
| 2 | ax-icn 9995 |
. . . . 5
| |
| 3 | recn 10026 |
. . . . 5
| |
| 4 | mulcl 10020 |
. . . . 5
| |
| 5 | 2, 3, 4 | sylancr 695 |
. . . 4
|
| 6 | addcl 10018 |
. . . 4
| |
| 7 | 1, 5, 6 | syl2an 494 |
. . 3
|
| 8 | reval 13846 |
. . 3
| |
| 9 | 7, 8 | syl 17 |
. 2
|
| 10 | cjcl 13845 |
. . . . . 6
| |
| 11 | 7, 10 | syl 17 |
. . . . 5
|
| 12 | 7, 11 | addcld 10059 |
. . . 4
|
| 13 | 12 | halfcld 11277 |
. . 3
|
| 14 | 1 | adantr 481 |
. . 3
|
| 15 | recl 13850 |
. . . . . . 7
| |
| 16 | 7, 15 | syl 17 |
. . . . . 6
|
| 17 | 9, 16 | eqeltrrd 2702 |
. . . . 5
|
| 18 | simpl 473 |
. . . . 5
| |
| 19 | 17, 18 | resubcld 10458 |
. . . 4
|
| 20 | 2 | a1i 11 |
. . . . . . 7
|
| 21 | 3 | adantl 482 |
. . . . . . . 8
|
| 22 | 2, 21, 4 | sylancr 695 |
. . . . . . 7
|
| 23 | 7, 11 | subcld 10392 |
. . . . . . . 8
|
| 24 | 23 | halfcld 11277 |
. . . . . . 7
|
| 25 | 20, 22, 24 | subdid 10486 |
. . . . . 6
|
| 26 | 14, 22, 14 | pnpcand 10429 |
. . . . . . . . . . . . . 14
|
| 27 | 22, 14, 22 | pnpcan2d 10430 |
. . . . . . . . . . . . . 14
|
| 28 | 26, 27 | eqtr4d 2659 |
. . . . . . . . . . . . 13
|
| 29 | 28 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 30 | 14, 14 | addcld 10059 |
. . . . . . . . . . . . 13
|
| 31 | 7, 11, 30 | addsubd 10413 |
. . . . . . . . . . . 12
|
| 32 | 22, 22 | addcld 10059 |
. . . . . . . . . . . . 13
|
| 33 | 32, 7, 11 | subsubd 10420 |
. . . . . . . . . . . 12
|
| 34 | 29, 31, 33 | 3eqtr4d 2666 |
. . . . . . . . . . 11
|
| 35 | 14 | 2timesd 11275 |
. . . . . . . . . . . 12
|
| 36 | 35 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 37 | 22 | 2timesd 11275 |
. . . . . . . . . . . 12
|
| 38 | 37 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 39 | 34, 36, 38 | 3eqtr4d 2666 |
. . . . . . . . . 10
|
| 40 | 39 | oveq1d 6665 |
. . . . . . . . 9
|
| 41 | 2cn 11091 |
. . . . . . . . . . 11
| |
| 42 | mulcl 10020 |
. . . . . . . . . . 11
| |
| 43 | 41, 14, 42 | sylancr 695 |
. . . . . . . . . 10
|
| 44 | 41 | a1i 11 |
. . . . . . . . . 10
|
| 45 | 2ne0 11113 |
. . . . . . . . . . 11
| |
| 46 | 45 | a1i 11 |
. . . . . . . . . 10
|
| 47 | 12, 43, 44, 46 | divsubdird 10840 |
. . . . . . . . 9
|
| 48 | mulcl 10020 |
. . . . . . . . . . 11
| |
| 49 | 41, 22, 48 | sylancr 695 |
. . . . . . . . . 10
|
| 50 | 49, 23, 44, 46 | divsubdird 10840 |
. . . . . . . . 9
|
| 51 | 40, 47, 50 | 3eqtr3d 2664 |
. . . . . . . 8
|
| 52 | 14, 44, 46 | divcan3d 10806 |
. . . . . . . . 9
|
| 53 | 52 | oveq2d 6666 |
. . . . . . . 8
|
| 54 | 22, 44, 46 | divcan3d 10806 |
. . . . . . . . 9
|
| 55 | 54 | oveq1d 6665 |
. . . . . . . 8
|
| 56 | 51, 53, 55 | 3eqtr3d 2664 |
. . . . . . 7
|
| 57 | 56 | oveq2d 6666 |
. . . . . 6
|
| 58 | 20, 20, 21 | mulassd 10063 |
. . . . . . 7
|
| 59 | 20, 23, 44, 46 | divassd 10836 |
. . . . . . 7
|
| 60 | 58, 59 | oveq12d 6668 |
. . . . . 6
|
| 61 | 25, 57, 60 | 3eqtr4d 2666 |
. . . . 5
|
| 62 | ixi 10656 |
. . . . . . . 8
| |
| 63 | neg1rr 11125 |
. . . . . . . 8
| |
| 64 | 62, 63 | eqeltri 2697 |
. . . . . . 7
|
| 65 | simpr 477 |
. . . . . . 7
| |
| 66 | remulcl 10021 |
. . . . . . 7
| |
| 67 | 64, 65, 66 | sylancr 695 |
. . . . . 6
|
| 68 | cjth 13843 |
. . . . . . . . 9
| |
| 69 | 68 | simprd 479 |
. . . . . . . 8
|
| 70 | 7, 69 | syl 17 |
. . . . . . 7
|
| 71 | 70 | rehalfcld 11279 |
. . . . . 6
|
| 72 | 67, 71 | resubcld 10458 |
. . . . 5
|
| 73 | 61, 72 | eqeltrd 2701 |
. . . 4
|
| 74 | rimul 11011 |
. . . 4
| |
| 75 | 19, 73, 74 | syl2anc 693 |
. . 3
|
| 76 | 13, 14, 75 | subeq0d 10400 |
. 2
|
| 77 | 9, 76 | eqtrd 2656 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 |
| This theorem is referenced by: crim 13855 replim 13856 mulre 13861 recj 13864 reneg 13865 readd 13866 remullem 13868 rei 13896 crrei 13932 crred 13971 rennim 13979 absreimsq 14032 4sqlem4 15656 2sqlem2 25143 cnre2csqima 29957 |
| Copyright terms: Public domain | W3C validator |