MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resfifsupp Structured version   Visualization version   Unicode version

Theorem resfifsupp 8303
Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
resfifsupp.f  |-  ( ph  ->  Fun  F )
resfifsupp.x  |-  ( ph  ->  X  e.  Fin )
resfifsupp.z  |-  ( ph  ->  Z  e.  V )
Assertion
Ref Expression
resfifsupp  |-  ( ph  ->  ( F  |`  X ) finSupp  Z )

Proof of Theorem resfifsupp
StepHypRef Expression
1 resfifsupp.f . . . 4  |-  ( ph  ->  Fun  F )
2 funrel 5905 . . . 4  |-  ( Fun 
F  ->  Rel  F )
31, 2syl 17 . . 3  |-  ( ph  ->  Rel  F )
4 resindm 5444 . . 3  |-  ( Rel 
F  ->  ( F  |`  ( X  i^i  dom  F ) )  =  ( F  |`  X )
)
53, 4syl 17 . 2  |-  ( ph  ->  ( F  |`  ( X  i^i  dom  F )
)  =  ( F  |`  X ) )
6 funfn 5918 . . . . 5  |-  ( Fun 
F  <->  F  Fn  dom  F )
71, 6sylib 208 . . . 4  |-  ( ph  ->  F  Fn  dom  F
)
8 fnresin2 6006 . . . 4  |-  ( F  Fn  dom  F  -> 
( F  |`  ( X  i^i  dom  F )
)  Fn  ( X  i^i  dom  F )
)
97, 8syl 17 . . 3  |-  ( ph  ->  ( F  |`  ( X  i^i  dom  F )
)  Fn  ( X  i^i  dom  F )
)
10 resfifsupp.x . . . 4  |-  ( ph  ->  X  e.  Fin )
11 infi 8184 . . . 4  |-  ( X  e.  Fin  ->  ( X  i^i  dom  F )  e.  Fin )
1210, 11syl 17 . . 3  |-  ( ph  ->  ( X  i^i  dom  F )  e.  Fin )
13 resfifsupp.z . . 3  |-  ( ph  ->  Z  e.  V )
149, 12, 13fndmfifsupp 8288 . 2  |-  ( ph  ->  ( F  |`  ( X  i^i  dom  F )
) finSupp  Z )
155, 14eqbrtrrd 4677 1  |-  ( ph  ->  ( F  |`  X ) finSupp  Z )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    i^i cin 3573   class class class wbr 4653   dom cdm 5114    |` cres 5116   Rel wrel 5119   Fun wfun 5882    Fn wfn 5883   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-er 7742  df-en 7956  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  xrge0tsmsd  29785
  Copyright terms: Public domain W3C validator