| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressioosup | Structured version Visualization version Unicode version | ||
| Description: If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| ressioosup.a |
|
| ressioosup.s |
|
| ressioosup.n |
|
| ressioosup.i |
|
| Ref | Expression |
|---|---|
| ressioosup |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 10096 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | ressioosup.s |
. . . . . 6
| |
| 4 | ressioosup.a |
. . . . . . . . 9
| |
| 5 | ressxr 10083 |
. . . . . . . . . 10
| |
| 6 | 5 | a1i 11 |
. . . . . . . . 9
|
| 7 | 4, 6 | sstrd 3613 |
. . . . . . . 8
|
| 8 | 7 | adantr 481 |
. . . . . . 7
|
| 9 | 8 | supxrcld 39290 |
. . . . . 6
|
| 10 | 3, 9 | syl5eqel 2705 |
. . . . 5
|
| 11 | 4 | adantr 481 |
. . . . . 6
|
| 12 | simpr 477 |
. . . . . 6
| |
| 13 | 11, 12 | sseldd 3604 |
. . . . 5
|
| 14 | 13 | mnfltd 11958 |
. . . . 5
|
| 15 | 7 | sselda 3603 |
. . . . . 6
|
| 16 | supxrub 12154 |
. . . . . . . 8
| |
| 17 | 8, 12, 16 | syl2anc 693 |
. . . . . . 7
|
| 18 | 3 | a1i 11 |
. . . . . . . 8
|
| 19 | 18 | eqcomd 2628 |
. . . . . . 7
|
| 20 | 17, 19 | breqtrd 4679 |
. . . . . 6
|
| 21 | id 22 |
. . . . . . . . . . . 12
| |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 23 | 22 | adantl 482 |
. . . . . . . . . 10
|
| 24 | simpl 473 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | eqeltrd 2701 |
. . . . . . . . 9
|
| 26 | 25 | adantll 750 |
. . . . . . . 8
|
| 27 | ressioosup.n |
. . . . . . . . 9
| |
| 28 | 27 | ad2antrr 762 |
. . . . . . . 8
|
| 29 | 26, 28 | pm2.65da 600 |
. . . . . . 7
|
| 30 | 29 | neqned 2801 |
. . . . . 6
|
| 31 | 15, 10, 20, 30 | xrleneltd 39539 |
. . . . 5
|
| 32 | 2, 10, 13, 14, 31 | eliood 39720 |
. . . 4
|
| 33 | ressioosup.i |
. . . 4
| |
| 34 | 32, 33 | syl6eleqr 2712 |
. . 3
|
| 35 | 34 | ralrimiva 2966 |
. 2
|
| 36 | dfss3 3592 |
. 2
| |
| 37 | 35, 36 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-ioo 12179 |
| This theorem is referenced by: pimdecfgtioo 40927 pimincfltioo 40928 |
| Copyright terms: Public domain | W3C validator |