MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcnrm Structured version   Visualization version   Unicode version

Theorem restcnrm 21166
Description: A subspace of a completely normal space is completely normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
restcnrm  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  ( Jt  A )  e. CNrm )

Proof of Theorem restcnrm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  U. J  =  U. J
21restin 20970 . 2  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  ( Jt  A )  =  ( Jt  ( A  i^i  U. J ) ) )
3 simpll 790 . . . . . 6  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  J  e. CNrm )
4 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P ( A  i^i  U. J )  ->  x  C_  ( A  i^i  U. J ) )
54adantl 482 . . . . . 6  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  x  C_  ( A  i^i  U. J ) )
6 inex1g 4801 . . . . . . 7  |-  ( A  e.  V  ->  ( A  i^i  U. J )  e.  _V )
76ad2antlr 763 . . . . . 6  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  ( A  i^i  U. J )  e.  _V )
8 restabs 20969 . . . . . 6  |-  ( ( J  e. CNrm  /\  x  C_  ( A  i^i  U. J )  /\  ( A  i^i  U. J )  e.  _V )  -> 
( ( Jt  ( A  i^i  U. J ) )t  x )  =  ( Jt  x ) )
93, 5, 7, 8syl3anc 1326 . . . . 5  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  (
( Jt  ( A  i^i  U. J ) )t  x )  =  ( Jt  x ) )
10 cnrmi 21164 . . . . . 6  |-  ( ( J  e. CNrm  /\  x  e.  ~P ( A  i^i  U. J ) )  -> 
( Jt  x )  e.  Nrm )
1110adantlr 751 . . . . 5  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  ( Jt  x )  e.  Nrm )
129, 11eqeltrd 2701 . . . 4  |-  ( ( ( J  e. CNrm  /\  A  e.  V )  /\  x  e.  ~P ( A  i^i  U. J
) )  ->  (
( Jt  ( A  i^i  U. J ) )t  x )  e.  Nrm )
1312ralrimiva 2966 . . 3  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  A. x  e.  ~P  ( A  i^i  U. J ) ( ( Jt  ( A  i^i  U. J ) )t  x )  e.  Nrm )
14 cnrmtop 21141 . . . . . . 7  |-  ( J  e. CNrm  ->  J  e.  Top )
1514adantr 481 . . . . . 6  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  J  e.  Top )
161toptopon 20722 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1715, 16sylib 208 . . . . 5  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  J  e.  (TopOn `  U. J ) )
18 inss2 3834 . . . . 5  |-  ( A  i^i  U. J ) 
C_  U. J
19 resttopon 20965 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( A  i^i  U. J ) 
C_  U. J )  -> 
( Jt  ( A  i^i  U. J ) )  e.  (TopOn `  ( A  i^i  U. J ) ) )
2017, 18, 19sylancl 694 . . . 4  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  ( Jt  ( A  i^i  U. J
) )  e.  (TopOn `  ( A  i^i  U. J ) ) )
21 iscnrm2 21142 . . . 4  |-  ( ( Jt  ( A  i^i  U. J ) )  e.  (TopOn `  ( A  i^i  U. J ) )  ->  ( ( Jt  ( A  i^i  U. J
) )  e. CNrm  <->  A. x  e.  ~P  ( A  i^i  U. J ) ( ( Jt  ( A  i^i  U. J ) )t  x )  e.  Nrm ) )
2220, 21syl 17 . . 3  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  (
( Jt  ( A  i^i  U. J ) )  e. CNrm  <->  A. x  e.  ~P  ( A  i^i  U. J ) ( ( Jt  ( A  i^i  U. J ) )t  x )  e.  Nrm ) )
2313, 22mpbird 247 . 2  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  ( Jt  ( A  i^i  U. J
) )  e. CNrm )
242, 23eqeltrd 2701 1  |-  ( ( J  e. CNrm  /\  A  e.  V )  ->  ( Jt  A )  e. CNrm )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   ` cfv 5888  (class class class)co 6650   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   Nrmcnrm 21114  CNrmccnrm 21115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cnrm 21122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator