MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadadd2 Structured version   Visualization version   Unicode version

Theorem sadadd2 15182
Description: Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.)
Hypotheses
Ref Expression
sadval.a  |-  ( ph  ->  A  C_  NN0 )
sadval.b  |-  ( ph  ->  B  C_  NN0 )
sadval.c  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
sadcp1.n  |-  ( ph  ->  N  e.  NN0 )
sadcadd.k  |-  K  =  `' (bits  |`  NN0 )
Assertion
Ref Expression
sadadd2  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Distinct variable groups:    m, c, n    A, c, m    B, c, m    n, N
Allowed substitution hints:    ph( m, n, c)    A( n)    B( n)    C( m, n, c)    K( m, n, c)    N( m, c)

Proof of Theorem sadadd2
Dummy variables  k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sadcp1.n . 2  |-  ( ph  ->  N  e.  NN0 )
2 oveq2 6658 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
0..^ x )  =  ( 0..^ 0 ) )
3 fzo0 12492 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
42, 3syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  0  ->  (
0..^ x )  =  (/) )
54ineq2d 3814 . . . . . . . . 9  |-  ( x  =  0  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  (/) ) )
6 in0 3968 . . . . . . . . 9  |-  ( ( A sadd  B )  i^i  (/) )  =  (/)
75, 6syl6eq 2672 . . . . . . . 8  |-  ( x  =  0  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  (/) )
87fveq2d 6195 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 (/) ) )
9 sadcadd.k . . . . . . . . 9  |-  K  =  `' (bits  |`  NN0 )
10 0nn0 11307 . . . . . . . . . . 11  |-  0  e.  NN0
11 fvres 6207 . . . . . . . . . . 11  |-  ( 0  e.  NN0  ->  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 ) )
1210, 11ax-mp 5 . . . . . . . . . 10  |-  ( (bits  |`  NN0 ) `  0
)  =  (bits ` 
0 )
13 0bits 15161 . . . . . . . . . 10  |-  (bits ` 
0 )  =  (/)
1412, 13eqtr2i 2645 . . . . . . . . 9  |-  (/)  =  ( (bits  |`  NN0 ) ` 
0 )
159, 14fveq12i 6196 . . . . . . . 8  |-  ( K `
 (/) )  =  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )
16 bitsf1o 15167 . . . . . . . . 9  |-  (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )
17 f1ocnvfv1 6532 . . . . . . . . 9  |-  ( ( (bits  |`  NN0 ) : NN0
-1-1-onto-> ( ~P NN0  i^i  Fin )  /\  0  e.  NN0 )  ->  ( `' (bits  |`  NN0 ) `  (
(bits  |`  NN0 ) ` 
0 ) )  =  0 )
1816, 10, 17mp2an 708 . . . . . . . 8  |-  ( `' (bits  |`  NN0 ) `  ( (bits  |`  NN0 ) `  0 ) )  =  0
1915, 18eqtri 2644 . . . . . . 7  |-  ( K `
 (/) )  =  0
208, 19syl6eq 2672 . . . . . 6  |-  ( x  =  0  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  0 )
21 fveq2 6191 . . . . . . . 8  |-  ( x  =  0  ->  ( C `  x )  =  ( C ` 
0 ) )
2221eleq2d 2687 . . . . . . 7  |-  ( x  =  0  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  0 ) ) )
23 oveq2 6658 . . . . . . 7  |-  ( x  =  0  ->  (
2 ^ x )  =  ( 2 ^ 0 ) )
2422, 23ifbieq1d 4109 . . . . . 6  |-  ( x  =  0  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) )
2520, 24oveq12d 6668 . . . . 5  |-  ( x  =  0  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( 0  +  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) ) )
264ineq2d 3814 . . . . . . . . . 10  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  (/) ) )
27 in0 3968 . . . . . . . . . 10  |-  ( A  i^i  (/) )  =  (/)
2826, 27syl6eq 2672 . . . . . . . . 9  |-  ( x  =  0  ->  ( A  i^i  ( 0..^ x ) )  =  (/) )
2928fveq2d 6195 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
3029, 19syl6eq 2672 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  0 )
314ineq2d 3814 . . . . . . . . . 10  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  (/) ) )
32 in0 3968 . . . . . . . . . 10  |-  ( B  i^i  (/) )  =  (/)
3331, 32syl6eq 2672 . . . . . . . . 9  |-  ( x  =  0  ->  ( B  i^i  ( 0..^ x ) )  =  (/) )
3433fveq2d 6195 . . . . . . . 8  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  (/) ) )
3534, 19syl6eq 2672 . . . . . . 7  |-  ( x  =  0  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  0 )
3630, 35oveq12d 6668 . . . . . 6  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( 0  +  0 ) )
37 00id 10211 . . . . . 6  |-  ( 0  +  0 )  =  0
3836, 37syl6eq 2672 . . . . 5  |-  ( x  =  0  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  0 )
3925, 38eqeq12d 2637 . . . 4  |-  ( x  =  0  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( 0  +  if ( (/)  e.  ( C `  0
) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 ) )
4039imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( 0  +  if (
(/)  e.  ( C `  0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 ) ) )
41 oveq2 6658 . . . . . . . 8  |-  ( x  =  k  ->  (
0..^ x )  =  ( 0..^ k ) )
4241ineq2d 3814 . . . . . . 7  |-  ( x  =  k  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ k ) ) )
4342fveq2d 6195 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) ) )
44 fveq2 6191 . . . . . . . 8  |-  ( x  =  k  ->  ( C `  x )  =  ( C `  k ) )
4544eleq2d 2687 . . . . . . 7  |-  ( x  =  k  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  k ) ) )
46 oveq2 6658 . . . . . . 7  |-  ( x  =  k  ->  (
2 ^ x )  =  ( 2 ^ k ) )
4745, 46ifbieq1d 4109 . . . . . 6  |-  ( x  =  k  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  k
) ,  ( 2 ^ k ) ,  0 ) )
4843, 47oveq12d 6668 . . . . 5  |-  ( x  =  k  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) ) )
4941ineq2d 3814 . . . . . . 7  |-  ( x  =  k  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ k ) ) )
5049fveq2d 6195 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ k ) ) ) )
5141ineq2d 3814 . . . . . . 7  |-  ( x  =  k  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ k ) ) )
5251fveq2d 6195 . . . . . 6  |-  ( x  =  k  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ k ) ) ) )
5350, 52oveq12d 6668 . . . . 5  |-  ( x  =  k  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )
5448, 53eqeq12d 2637 . . . 4  |-  ( x  =  k  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) ) )
5554imbi2d 330 . . 3  |-  ( x  =  k  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) ) ) )
56 oveq2 6658 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  (
0..^ x )  =  ( 0..^ ( k  +  1 ) ) )
5756ineq2d 3814 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )
5857fveq2d 6195 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ ( k  +  1 ) ) ) ) )
59 fveq2 6191 . . . . . . . 8  |-  ( x  =  ( k  +  1 )  ->  ( C `  x )  =  ( C `  ( k  +  1 ) ) )
6059eleq2d 2687 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  ( k  +  1 ) ) ) )
61 oveq2 6658 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  (
2 ^ x )  =  ( 2 ^ ( k  +  1 ) ) )
6260, 61ifbieq1d 4109 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  (
k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )
6358, 62oveq12d 6668 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) ) )
6456ineq2d 3814 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )
6564fveq2d 6195 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
6656ineq2d 3814 . . . . . . 7  |-  ( x  =  ( k  +  1 )  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) )
6766fveq2d 6195 . . . . . 6  |-  ( x  =  ( k  +  1 )  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) )
6865, 67oveq12d 6668 . . . . 5  |-  ( x  =  ( k  +  1 )  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) )
6963, 68eqeq12d 2637 . . . 4  |-  ( x  =  ( k  +  1 )  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
7069imbi2d 330 . . 3  |-  ( x  =  ( k  +  1 )  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
71 oveq2 6658 . . . . . . . 8  |-  ( x  =  N  ->  (
0..^ x )  =  ( 0..^ N ) )
7271ineq2d 3814 . . . . . . 7  |-  ( x  =  N  ->  (
( A sadd  B )  i^i  ( 0..^ x ) )  =  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )
7372fveq2d 6195 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( ( A sadd  B )  i^i  (
0..^ x ) ) )  =  ( K `
 ( ( A sadd 
B )  i^i  (
0..^ N ) ) ) )
74 fveq2 6191 . . . . . . . 8  |-  ( x  =  N  ->  ( C `  x )  =  ( C `  N ) )
7574eleq2d 2687 . . . . . . 7  |-  ( x  =  N  ->  ( (/) 
e.  ( C `  x )  <->  (/)  e.  ( C `  N ) ) )
76 oveq2 6658 . . . . . . 7  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
7775, 76ifbieq1d 4109 . . . . . 6  |-  ( x  =  N  ->  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 )  =  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )
7873, 77oveq12d 6668 . . . . 5  |-  ( x  =  N  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) ) )
7971ineq2d 3814 . . . . . . 7  |-  ( x  =  N  ->  ( A  i^i  ( 0..^ x ) )  =  ( A  i^i  ( 0..^ N ) ) )
8079fveq2d 6195 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( A  i^i  ( 0..^ x ) ) )  =  ( K `  ( A  i^i  ( 0..^ N ) ) ) )
8171ineq2d 3814 . . . . . . 7  |-  ( x  =  N  ->  ( B  i^i  ( 0..^ x ) )  =  ( B  i^i  ( 0..^ N ) ) )
8281fveq2d 6195 . . . . . 6  |-  ( x  =  N  ->  ( K `  ( B  i^i  ( 0..^ x ) ) )  =  ( K `  ( B  i^i  ( 0..^ N ) ) ) )
8380, 82oveq12d 6668 . . . . 5  |-  ( x  =  N  ->  (
( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) )  =  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
8478, 83eqeq12d 2637 . . . 4  |-  ( x  =  N  ->  (
( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `  x
) ,  ( 2 ^ x ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ x ) ) )  +  ( K `
 ( B  i^i  ( 0..^ x ) ) ) )  <->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ N ) ) )  +  if (
(/)  e.  ( C `  N ) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
8584imbi2d 330 . . 3  |-  ( x  =  N  ->  (
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ x ) ) )  +  if ( (/)  e.  ( C `
 x ) ,  ( 2 ^ x
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ x ) ) )  +  ( K `  ( B  i^i  ( 0..^ x ) ) ) ) )  <->  ( ph  ->  ( ( K `  (
( A sadd  B )  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `
 N ) ,  ( 2 ^ N
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ N ) ) )  +  ( K `  ( B  i^i  ( 0..^ N ) ) ) ) ) ) )
86 sadval.a . . . . . . 7  |-  ( ph  ->  A  C_  NN0 )
87 sadval.b . . . . . . 7  |-  ( ph  ->  B  C_  NN0 )
88 sadval.c . . . . . . 7  |-  C  =  seq 0 ( ( c  e.  2o ,  m  e.  NN0  |->  if (cadd ( m  e.  A ,  m  e.  B ,  (/)  e.  c ) ,  1o ,  (/) ) ) ,  ( n  e.  NN0  |->  if ( n  =  0 ,  (/) ,  ( n  - 
1 ) ) ) )
8986, 87, 88sadc0 15176 . . . . . 6  |-  ( ph  ->  -.  (/)  e.  ( C `
 0 ) )
9089iffalsed 4097 . . . . 5  |-  ( ph  ->  if ( (/)  e.  ( C `  0 ) ,  ( 2 ^ 0 ) ,  0 )  =  0 )
9190oveq2d 6666 . . . 4  |-  ( ph  ->  ( 0  +  if ( (/)  e.  ( C `
 0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  ( 0  +  0 ) )
9291, 37syl6eq 2672 . . 3  |-  ( ph  ->  ( 0  +  if ( (/)  e.  ( C `
 0 ) ,  ( 2 ^ 0 ) ,  0 ) )  =  0 )
9386ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  A  C_  NN0 )
9487ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  B  C_  NN0 )
95 simplr 792 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  k  e.  NN0 )
96 simpr 477 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )
9793, 94, 88, 95, 9, 96sadadd2lem 15181 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) ) )  ->  ( ( K `  ( ( A sadd  B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) )
9897ex 450 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( K `  (
( A sadd  B )  i^i  ( 0..^ k ) ) )  +  if ( (/)  e.  ( C `
 k ) ,  ( 2 ^ k
) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ k ) ) )  +  ( K `  ( B  i^i  ( 0..^ k ) ) ) )  ->  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ ( k  +  1 ) ) ) )  +  if (
(/)  e.  ( C `  ( k  +  1 ) ) ,  ( 2 ^ ( k  +  1 ) ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `
 ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) )
9998expcom 451 . . . 4  |-  ( k  e.  NN0  ->  ( ph  ->  ( ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) )  ->  (
( K `  (
( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
10099a2d 29 . . 3  |-  ( k  e.  NN0  ->  ( (
ph  ->  ( ( K `
 ( ( A sadd 
B )  i^i  (
0..^ k ) ) )  +  if (
(/)  e.  ( C `  k ) ,  ( 2 ^ k ) ,  0 ) )  =  ( ( K `
 ( A  i^i  ( 0..^ k ) ) )  +  ( K `
 ( B  i^i  ( 0..^ k ) ) ) ) )  -> 
( ph  ->  ( ( K `  ( ( A sadd  B )  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  if ( (/)  e.  ( C `
 ( k  +  1 ) ) ,  ( 2 ^ (
k  +  1 ) ) ,  0 ) )  =  ( ( K `  ( A  i^i  ( 0..^ ( k  +  1 ) ) ) )  +  ( K `  ( B  i^i  ( 0..^ ( k  +  1 ) ) ) ) ) ) ) )
10140, 55, 70, 85, 92, 100nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) ) )
1021, 101mpcom 38 1  |-  ( ph  ->  ( ( K `  ( ( A sadd  B
)  i^i  ( 0..^ N ) ) )  +  if ( (/)  e.  ( C `  N
) ,  ( 2 ^ N ) ,  0 ) )  =  ( ( K `  ( A  i^i  (
0..^ N ) ) )  +  ( K `
 ( B  i^i  ( 0..^ N ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483  caddwcad 1545    e. wcel 1990    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158    |-> cmpt 4729   `'ccnv 5113    |` cres 5116   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939    - cmin 10266   2c2 11070   NN0cn0 11292  ..^cfzo 12465    seqcseq 12801   ^cexp 12860  bitscbits 15141   sadd csad 15142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-xor 1465  df-tru 1486  df-fal 1489  df-had 1533  df-cad 1546  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-sad 15173
This theorem is referenced by:  sadadd3  15183
  Copyright terms: Public domain W3C validator