Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutbdaybnd Structured version   Visualization version   Unicode version

Theorem scutbdaybnd 31921
Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
scutbdaybnd  |-  ( A < <s B  ->  ( bday `  ( A |s B ) )  C_  suc  U. ( bday " ( A  u.  B ) ) )

Proof of Theorem scutbdaybnd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etasslt 31920 . 2  |-  ( A < <s B  ->  E. x  e.  No  ( A < <s { x }  /\  { x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) )
2 scutbday 31913 . . . . . 6  |-  ( A < <s B  ->  ( bday `  ( A |s B ) )  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
32adantr 481 . . . . 5  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( bday `  ( A |s B ) )  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
4 bdayfn 31889 . . . . . . 7  |-  bday  Fn  No
5 ssrab2 3687 . . . . . . 7  |-  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  C_  No
6 simprl 794 . . . . . . . 8  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  x  e.  No )
7 simprr1 1109 . . . . . . . . 9  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  A < <s { x } )
8 simprr2 1110 . . . . . . . . 9  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  { x }
< <s B )
97, 8jca 554 . . . . . . . 8  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( A <
<s { x }  /\  { x }
< <s B ) )
10 sneq 4187 . . . . . . . . . . 11  |-  ( y  =  x  ->  { y }  =  { x } )
1110breq2d 4665 . . . . . . . . . 10  |-  ( y  =  x  ->  ( A < <s {
y }  <->  A < <s { x } ) )
1210breq1d 4663 . . . . . . . . . 10  |-  ( y  =  x  ->  ( { y } < <s B  <->  { x } < <s B ) )
1311, 12anbi12d 747 . . . . . . . . 9  |-  ( y  =  x  ->  (
( A < <s { y }  /\  { y } < <s B )  <->  ( A < <s { x }  /\  { x }
< <s B ) ) )
1413elrab 3363 . . . . . . . 8  |-  ( x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  <->  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B ) ) )
156, 9, 14sylanbrc 698 . . . . . . 7  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )
16 fnfvima 6496 . . . . . . 7  |-  ( (
bday  Fn  No  /\  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  C_  No  /\  x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  ->  ( bday `  x
)  e.  ( bday " { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } ) )
174, 5, 15, 16mp3an12i 1428 . . . . . 6  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( bday `  x
)  e.  ( bday " { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } ) )
18 intss1 4492 . . . . . 6  |-  ( (
bday `  x )  e.  ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  ->  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) 
C_  ( bday `  x
) )
1917, 18syl 17 . . . . 5  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) 
C_  ( bday `  x
) )
203, 19eqsstrd 3639 . . . 4  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( bday `  ( A |s B ) )  C_  ( bday `  x ) )
21 simprr3 1111 . . . 4  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( bday `  x
)  C_  suc  U. ( bday " ( A  u.  B ) ) )
2220, 21sstrd 3613 . . 3  |-  ( ( A < <s
B  /\  ( x  e.  No  /\  ( A < <s {
x }  /\  {
x } < <s B  /\  ( bday `  x )  C_  suc  U. ( bday " ( A  u.  B )
) ) ) )  ->  ( bday `  ( A |s B ) )  C_  suc  U. ( bday " ( A  u.  B ) ) )
2322rexlimdvaa 3032 . 2  |-  ( A < <s B  ->  ( E. x  e.  No  ( A <
<s { x }  /\  { x }
< <s B  /\  ( bday `  x )  C_ 
suc  U. ( bday " ( A  u.  B )
) )  ->  ( bday `  ( A |s B ) ) 
C_  suc  U. ( bday " ( A  u.  B ) ) ) )
241, 23mpd 15 1  |-  ( A < <s B  ->  ( bday `  ( A |s B ) )  C_  suc  U. ( bday " ( A  u.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    u. cun 3572    C_ wss 3574   {csn 4177   U.cuni 4436   |^|cint 4475   class class class wbr 4653   "cima 5117   suc csuc 5725    Fn wfn 5883   ` cfv 5888  (class class class)co 6650   Nocsur 31793   bdaycbday 31795   < <scsslt 31896   |scscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sslt 31897  df-scut 31899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator