![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibf0 | Structured version Visualization version Unicode version |
Description: The constant zero function is a simple function. (Contributed by Thierry Arnoux, 4-Mar-2018.) |
Ref | Expression |
---|---|
sitgval.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sitgval.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sibf0.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sibf0.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sibf0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sitgval.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dmmeas 30264 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 17 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | sitgval.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | sitgval.j |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | fvex 6201 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | eqeltri 2697 |
. . . . . 6
![]() ![]() ![]() ![]() |
8 | 7 | a1i 11 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 8 | sgsiga 30205 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 4, 9 | syl5eqel 2705 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | fconstmpt 5163 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 11 | a1i 11 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | sibf0.2 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | sitgval.b |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | sitgval.0 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | mndidcl 17308 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 13, 16 | syl 17 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | sibf0.1 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 14, 5 | tpsuni 20740 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 18, 19 | syl 17 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 4 | unieqi 4445 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | unisg 30206 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | 7, 22 | mp1i 13 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 21, 23 | syl5eq 2668 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 20, 24 | eqtr4d 2659 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 17, 25 | eleqtrd 2703 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 3, 10, 12, 26 | mbfmcst 30321 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | xpeq1 5128 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | 0xp 5199 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 28, 29 | syl6eq 2672 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 30 | rneqd 5353 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | rn0 5377 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
33 | 31, 32 | syl6eq 2672 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 0fin 8188 |
. . . . 5
![]() ![]() ![]() ![]() | |
35 | 33, 34 | syl6eqel 2709 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | rnxp 5564 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
37 | snfi 8038 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() | |
38 | 36, 37 | syl6eqel 2709 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
39 | 35, 38 | pm2.61ine 2877 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
40 | 39 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
41 | noel 3919 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() | |
42 | 33 | difeq1d 3727 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
43 | 0dif 3977 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
44 | 42, 43 | syl6eq 2672 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
45 | 36 | difeq1d 3727 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
46 | difid 3948 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
47 | 45, 46 | syl6eq 2672 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
48 | 44, 47 | pm2.61ine 2877 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
49 | 48 | eleq2i 2693 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
50 | 41, 49 | mtbir 313 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
51 | 50 | pm2.21i 116 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
52 | 51 | adantl 482 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
53 | 52 | ralrimiva 2966 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
54 | sitgval.x |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
55 | sitgval.h |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
56 | sitgval.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
57 | 14, 5, 4, 15, 54, 55, 56, 1 | issibf 30395 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
58 | 27, 40, 53, 57 | mpbir3and 1245 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1o 7560 df-map 7859 df-en 7956 df-fin 7959 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-top 20699 df-topon 20716 df-topsp 20737 df-esum 30090 df-siga 30171 df-sigagen 30202 df-meas 30259 df-mbfm 30313 df-sitg 30392 |
This theorem is referenced by: sitg0 30408 |
Copyright terms: Public domain | W3C validator |