| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sitg0 | Structured version Visualization version Unicode version | ||
| Description: The integral of the constant zero function is zero. (Contributed by Thierry Arnoux, 13-Mar-2018.) |
| Ref | Expression |
|---|---|
| sitgval.b |
|
| sitgval.j |
|
| sitgval.s |
|
| sitgval.0 |
|
| sitgval.x |
|
| sitgval.h |
|
| sitgval.1 |
|
| sitgval.2 |
|
| sitg0.1 |
|
| sitg0.2 |
|
| Ref | Expression |
|---|---|
| sitg0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sitgval.b |
. . 3
| |
| 2 | sitgval.j |
. . 3
| |
| 3 | sitgval.s |
. . 3
| |
| 4 | sitgval.0 |
. . 3
| |
| 5 | sitgval.x |
. . 3
| |
| 6 | sitgval.h |
. . 3
| |
| 7 | sitgval.1 |
. . 3
| |
| 8 | sitgval.2 |
. . 3
| |
| 9 | sitg0.1 |
. . . 4
| |
| 10 | sitg0.2 |
. . . 4
| |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sibf0 30396 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | sitgfval 30403 |
. 2
|
| 13 | rnxpss 5566 |
. . . . . . 7
| |
| 14 | ssdif0 3942 |
. . . . . . 7
| |
| 15 | 13, 14 | mpbi 220 |
. . . . . 6
|
| 16 | mpteq1 4737 |
. . . . . 6
| |
| 17 | 15, 16 | ax-mp 5 |
. . . . 5
|
| 18 | mpt0 6021 |
. . . . 5
| |
| 19 | 17, 18 | eqtri 2644 |
. . . 4
|
| 20 | 19 | oveq2i 6661 |
. . 3
|
| 21 | 4 | gsum0 17278 |
. . 3
|
| 22 | 20, 21 | eqtri 2644 |
. 2
|
| 23 | 12, 22 | syl6eq 2672 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-map 7859 df-en 7956 df-fin 7959 df-seq 12802 df-0g 16102 df-gsum 16103 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-top 20699 df-topon 20716 df-topsp 20737 df-esum 30090 df-siga 30171 df-sigagen 30202 df-meas 30259 df-mbfm 30313 df-sitg 30392 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |