MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sniffsupp Structured version   Visualization version   Unicode version

Theorem sniffsupp 8315
Description: A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
sniffsupp.i  |-  ( ph  ->  I  e.  V )
sniffsupp.0  |-  ( ph  ->  .0.  e.  W )
sniffsupp.f  |-  F  =  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )
Assertion
Ref Expression
sniffsupp  |-  ( ph  ->  F finSupp  .0.  )
Distinct variable groups:    x, I    x, X    x,  .0.    ph, x
Allowed substitution hints:    A( x)    F( x)    V( x)    W( x)

Proof of Theorem sniffsupp
StepHypRef Expression
1 sniffsupp.f . 2  |-  F  =  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )
2 snfi 8038 . . . 4  |-  { X }  e.  Fin
3 eldifsni 4320 . . . . . . . 8  |-  ( x  e.  ( I  \  { X } )  ->  x  =/=  X )
43adantl 482 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( I  \  { X } ) )  ->  x  =/=  X )
54neneqd 2799 . . . . . 6  |-  ( (
ph  /\  x  e.  ( I  \  { X } ) )  ->  -.  x  =  X
)
65iffalsed 4097 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  \  { X } ) )  ->  if ( x  =  X ,  A ,  .0.  )  =  .0.  )
7 sniffsupp.i . . . . 5  |-  ( ph  ->  I  e.  V )
86, 7suppss2 7329 . . . 4  |-  ( ph  ->  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) supp  .0.  )  C_  { X }
)
9 ssfi 8180 . . . 4  |-  ( ( { X }  e.  Fin  /\  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  )
) supp  .0.  )  C_  { X } )  -> 
( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) supp  .0.  )  e.  Fin )
102, 8, 9sylancr 695 . . 3  |-  ( ph  ->  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) supp  .0.  )  e.  Fin )
11 funmpt 5926 . . . . 5  |-  Fun  (
x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )
1211a1i 11 . . . 4  |-  ( ph  ->  Fun  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) )
13 mptexg 6484 . . . . 5  |-  ( I  e.  V  ->  (
x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )  e.  _V )
147, 13syl 17 . . . 4  |-  ( ph  ->  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )  e.  _V )
15 sniffsupp.0 . . . 4  |-  ( ph  ->  .0.  e.  W )
16 funisfsupp 8280 . . . 4  |-  ( ( Fun  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )  /\  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )  e.  _V  /\  .0.  e.  W )  ->  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  )
) finSupp  .0.  <->  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  )
) supp  .0.  )  e.  Fin ) )
1712, 14, 15, 16syl3anc 1326 . . 3  |-  ( ph  ->  ( ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) finSupp  .0.  <->  (
( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) supp  .0.  )  e.  Fin ) )
1810, 17mpbird 247 . 2  |-  ( ph  ->  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) ) finSupp  .0.  )
191, 18syl5eqbr 4688 1  |-  ( ph  ->  F finSupp  .0.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   Fun wfun 5882  (class class class)co 6650   supp csupp 7295   Fincfn 7955   finSupp cfsupp 8275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-supp 7296  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-fsupp 8276
This theorem is referenced by:  dprdfid  18416  snifpsrbag  19366
  Copyright terms: Public domain W3C validator