Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limciccioolb Structured version   Visualization version   Unicode version

Theorem limciccioolb 39853
Description: The limit of a function at the lower bound of a closed interval only depends on the values in the inner open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
limciccioolb.1  |-  ( ph  ->  A  e.  RR )
limciccioolb.2  |-  ( ph  ->  B  e.  RR )
limciccioolb.3  |-  ( ph  ->  A  <  B )
limciccioolb.4  |-  ( ph  ->  F : ( A [,] B ) --> CC )
Assertion
Ref Expression
limciccioolb  |-  ( ph  ->  ( ( F  |`  ( A (,) B ) ) lim CC  A )  =  ( F lim CC  A ) )

Proof of Theorem limciccioolb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 limciccioolb.4 . 2  |-  ( ph  ->  F : ( A [,] B ) --> CC )
2 ioossicc 12259 . . 3  |-  ( A (,) B )  C_  ( A [,] B )
32a1i 11 . 2  |-  ( ph  ->  ( A (,) B
)  C_  ( A [,] B ) )
4 limciccioolb.1 . . . 4  |-  ( ph  ->  A  e.  RR )
5 limciccioolb.2 . . . 4  |-  ( ph  ->  B  e.  RR )
64, 5iccssred 39727 . . 3  |-  ( ph  ->  ( A [,] B
)  C_  RR )
7 ax-resscn 9993 . . 3  |-  RR  C_  CC
86, 7syl6ss 3615 . 2  |-  ( ph  ->  ( A [,] B
)  C_  CC )
9 eqid 2622 . 2  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
10 eqid 2622 . 2  |-  ( (
TopOpen ` fld )t  ( ( A [,] B )  u.  { A } ) )  =  ( ( TopOpen ` fld )t  ( ( A [,] B )  u. 
{ A } ) )
11 retop 22565 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
1211a1i 11 . . . . . . . 8  |-  ( ph  ->  ( topGen `  ran  (,) )  e.  Top )
135rexrd 10089 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR* )
14 icossre 12254 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( A [,) B
)  C_  RR )
154, 13, 14syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( A [,) B
)  C_  RR )
16 difssd 3738 . . . . . . . . . 10  |-  ( ph  ->  ( RR  \  ( A [,] B ) ) 
C_  RR )
1715, 16unssd 3789 . . . . . . . . 9  |-  ( ph  ->  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) 
C_  RR )
18 uniretop 22566 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
1917, 18syl6sseq 3651 . . . . . . . 8  |-  ( ph  ->  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) 
C_  U. ( topGen `  ran  (,) ) )
20 elioore 12205 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( -oo (,) B )  ->  x  e.  RR )
2120ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  x  e.  RR )
22 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  A  <_  x )
23 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  x  e.  ( -oo (,) B ) )
24 mnfxr 10096 . . . . . . . . . . . . . . . . . . 19  |- -oo  e.  RR*
2524a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  -> -oo  e.  RR* )
2613adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  B  e.  RR* )
27 elioo2 12216 . . . . . . . . . . . . . . . . . 18  |-  ( ( -oo  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( -oo (,) B )  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <  B
) ) )
2825, 26, 27syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  ( x  e.  ( -oo (,) B
)  <->  ( x  e.  RR  /\ -oo  <  x  /\  x  <  B
) ) )
2923, 28mpbid 222 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  ( x  e.  RR  /\ -oo  <  x  /\  x  <  B
) )
3029simp3d 1075 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  x  <  B )
3130adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  x  <  B )
324ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  A  e.  RR )
3313ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  B  e.  RR* )
34 elico2 12237 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  B  e.  RR* )  -> 
( x  e.  ( A [,) B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <  B ) ) )
3532, 33, 34syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR  /\  A  <_  x  /\  x  <  B
) ) )
3621, 22, 31, 35mpbir3and 1245 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  x  e.  ( A [,) B
) )
3736orcd 407 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  A  <_  x )  ->  (
x  e.  ( A [,) B )  \/  x  e.  ( RR 
\  ( A [,] B ) ) ) )
3820ad2antlr 763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  x  e.  RR )
39 simpr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  -.  A  <_  x )
4039intnanrd 963 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  -.  ( A  <_  x  /\  x  <_  B ) )
414rexrd 10089 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  RR* )
4241ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  A  e.  RR* )
4313ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  B  e.  RR* )
4438rexrd 10089 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  x  e.  RR* )
45 elicc4 12240 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e. 
RR* )  ->  (
x  e.  ( A [,] B )  <->  ( A  <_  x  /\  x  <_  B ) ) )
4642, 43, 44, 45syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  -> 
( x  e.  ( A [,] B )  <-> 
( A  <_  x  /\  x  <_  B ) ) )
4740, 46mtbird 315 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  -.  x  e.  ( A [,] B ) )
4838, 47eldifd 3585 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  ->  x  e.  ( RR  \  ( A [,] B
) ) )
4948olcd 408 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( -oo (,) B
) )  /\  -.  A  <_  x )  -> 
( x  e.  ( A [,) B )  \/  x  e.  ( RR  \  ( A [,] B ) ) ) )
5037, 49pm2.61dan 832 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  ( x  e.  ( A [,) B
)  \/  x  e.  ( RR  \  ( A [,] B ) ) ) )
51 elun 3753 . . . . . . . . . . 11  |-  ( x  e.  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) )  <->  ( x  e.  ( A [,) B
)  \/  x  e.  ( RR  \  ( A [,] B ) ) ) )
5250, 51sylibr 224 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( -oo (,) B ) )  ->  x  e.  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )
5352ralrimiva 2966 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( -oo (,) B ) x  e.  ( ( A [,) B )  u.  ( RR  \ 
( A [,] B
) ) ) )
54 dfss3 3592 . . . . . . . . 9  |-  ( ( -oo (,) B ) 
C_  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) )  <->  A. x  e.  ( -oo (,) B ) x  e.  ( ( A [,) B )  u.  ( RR  \ 
( A [,] B
) ) ) )
5553, 54sylibr 224 . . . . . . . 8  |-  ( ph  ->  ( -oo (,) B
)  C_  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )
56 eqid 2622 . . . . . . . . 9  |-  U. ( topGen `
 ran  (,) )  =  U. ( topGen `  ran  (,) )
5756ntrss 20859 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( ( A [,) B )  u.  ( RR  \ 
( A [,] B
) ) )  C_  U. ( topGen `  ran  (,) )  /\  ( -oo (,) B
)  C_  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  ->  (
( int `  ( topGen `
 ran  (,) )
) `  ( -oo (,) B ) )  C_  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
5812, 19, 55, 57syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( -oo (,) B ) )  C_  ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
5924a1i 11 . . . . . . . . 9  |-  ( ph  -> -oo  e.  RR* )
604mnfltd 11958 . . . . . . . . 9  |-  ( ph  -> -oo  <  A )
61 limciccioolb.3 . . . . . . . . 9  |-  ( ph  ->  A  <  B )
6259, 13, 4, 60, 61eliood 39720 . . . . . . . 8  |-  ( ph  ->  A  e.  ( -oo (,) B ) )
63 iooretop 22569 . . . . . . . . . 10  |-  ( -oo (,) B )  e.  (
topGen `  ran  (,) )
6463a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( -oo (,) B
)  e.  ( topGen ` 
ran  (,) ) )
65 isopn3i 20886 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( -oo (,) B )  e.  (
topGen `  ran  (,) )
)  ->  ( ( int `  ( topGen `  ran  (,) ) ) `  ( -oo (,) B ) )  =  ( -oo (,) B ) )
6612, 64, 65syl2anc 693 . . . . . . . 8  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( -oo (,) B ) )  =  ( -oo (,) B
) )
6762, 66eleqtrrd 2704 . . . . . . 7  |-  ( ph  ->  A  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( -oo (,) B ) ) )
6858, 67sseldd 3604 . . . . . 6  |-  ( ph  ->  A  e.  ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) ) )
694leidd 10594 . . . . . . 7  |-  ( ph  ->  A  <_  A )
704, 5, 61ltled 10185 . . . . . . 7  |-  ( ph  ->  A  <_  B )
714, 5, 4, 69, 70eliccd 39726 . . . . . 6  |-  ( ph  ->  A  e.  ( A [,] B ) )
7268, 71elind 3798 . . . . 5  |-  ( ph  ->  A  e.  ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
73 icossicc 12260 . . . . . . 7  |-  ( A [,) B )  C_  ( A [,] B )
7473a1i 11 . . . . . 6  |-  ( ph  ->  ( A [,) B
)  C_  ( A [,] B ) )
75 eqid 2622 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  ( A [,] B ) )  =  ( ( topGen ` 
ran  (,) )t  ( A [,] B ) )
7618, 75restntr 20986 . . . . . 6  |-  ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( A [,] B )  C_  RR  /\  ( A [,) B )  C_  ( A [,] B ) )  ->  ( ( int `  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) ) `  ( A [,) B ) )  =  ( ( ( int `  ( topGen `
 ran  (,) )
) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
7712, 6, 74, 76syl3anc 1326 . . . . 5  |-  ( ph  ->  ( ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) ) `  ( A [,) B ) )  =  ( ( ( int `  ( topGen ` 
ran  (,) ) ) `  ( ( A [,) B )  u.  ( RR  \  ( A [,] B ) ) ) )  i^i  ( A [,] B ) ) )
7872, 77eleqtrrd 2704 . . . 4  |-  ( ph  ->  A  e.  ( ( int `  ( (
topGen `  ran  (,) )t  ( A [,] B ) ) ) `  ( A [,) B ) ) )
79 eqid 2622 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
809, 79rerest 22607 . . . . . . . 8  |-  ( ( A [,] B ) 
C_  RR  ->  ( (
TopOpen ` fld )t  ( A [,] B
) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B ) ) )
816, 80syl 17 . . . . . . 7  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A [,] B ) )  =  ( ( topGen `  ran  (,) )t  ( A [,] B
) ) )
8281eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( A [,] B
) )  =  ( ( TopOpen ` fld )t  ( A [,] B ) ) )
8382fveq2d 6195 . . . . 5  |-  ( ph  ->  ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) )  =  ( int `  ( ( TopOpen ` fld )t  ( A [,] B ) ) ) )
8483fveq1d 6193 . . . 4  |-  ( ph  ->  ( ( int `  (
( topGen `  ran  (,) )t  ( A [,] B ) ) ) `  ( A [,) B ) )  =  ( ( int `  ( ( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A [,) B ) ) )
8578, 84eleqtrd 2703 . . 3  |-  ( ph  ->  A  e.  ( ( int `  ( (
TopOpen ` fld )t  ( A [,] B
) ) ) `  ( A [,) B ) ) )
8671snssd 4340 . . . . . . . 8  |-  ( ph  ->  { A }  C_  ( A [,] B ) )
87 ssequn2 3786 . . . . . . . 8  |-  ( { A }  C_  ( A [,] B )  <->  ( ( A [,] B )  u. 
{ A } )  =  ( A [,] B ) )
8886, 87sylib 208 . . . . . . 7  |-  ( ph  ->  ( ( A [,] B )  u.  { A } )  =  ( A [,] B ) )
8988eqcomd 2628 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  =  ( ( A [,] B )  u.  { A }
) )
9089oveq2d 6666 . . . . 5  |-  ( ph  ->  ( ( TopOpen ` fld )t  ( A [,] B ) )  =  ( ( TopOpen ` fld )t  ( ( A [,] B )  u. 
{ A } ) ) )
9190fveq2d 6195 . . . 4  |-  ( ph  ->  ( int `  (
( TopOpen ` fld )t  ( A [,] B ) ) )  =  ( int `  (
( TopOpen ` fld )t  ( ( A [,] B )  u. 
{ A } ) ) ) )
92 uncom 3757 . . . . 5  |-  ( ( A (,) B )  u.  { A }
)  =  ( { A }  u.  ( A (,) B ) )
93 snunioo 12298 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  < 
B )  ->  ( { A }  u.  ( A (,) B ) )  =  ( A [,) B ) )
9441, 13, 61, 93syl3anc 1326 . . . . 5  |-  ( ph  ->  ( { A }  u.  ( A (,) B
) )  =  ( A [,) B ) )
9592, 94syl5req 2669 . . . 4  |-  ( ph  ->  ( A [,) B
)  =  ( ( A (,) B )  u.  { A }
) )
9691, 95fveq12d 6197 . . 3  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  ( A [,] B ) ) ) `
 ( A [,) B ) )  =  ( ( int `  (
( TopOpen ` fld )t  ( ( A [,] B )  u. 
{ A } ) ) ) `  (
( A (,) B
)  u.  { A } ) ) )
9785, 96eleqtrd 2703 . 2  |-  ( ph  ->  A  e.  ( ( int `  ( (
TopOpen ` fld )t  ( ( A [,] B )  u.  { A } ) ) ) `
 ( ( A (,) B )  u. 
{ A } ) ) )
981, 3, 8, 9, 10, 97limcres 23650 1  |-  ( ph  ->  ( ( F  |`  ( A (,) B ) ) lim CC  A )  =  ( F lim CC  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   U.cuni 4436   class class class wbr 4653   ran crn 5115    |` cres 5116   -->wf 5884   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   (,)cioo 12175   [,)cico 12177   [,]cicc 12178   ↾t crest 16081   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   Topctop 20698   intcnt 20821   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  cncfiooicclem1  40106  fourierdlem82  40405  fourierdlem93  40416  fourierdlem111  40434
  Copyright terms: Public domain W3C validator