MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfectlem2 Structured version   Visualization version   Unicode version

Theorem perfectlem2 24955
Description: Lemma for perfect 24956. (Contributed by Mario Carneiro, 17-May-2016.) Replace OLD theorem. (Revised by Wolf Lammen, 17-Sep-2020.)
Hypotheses
Ref Expression
perfectlem.1  |-  ( ph  ->  A  e.  NN )
perfectlem.2  |-  ( ph  ->  B  e.  NN )
perfectlem.3  |-  ( ph  ->  -.  2  ||  B
)
perfectlem.4  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
Assertion
Ref Expression
perfectlem2  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )

Proof of Theorem perfectlem2
Dummy variables  k  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 perfectlem.2 . . . 4  |-  ( ph  ->  B  e.  NN )
2 1red 10055 . . . . 5  |-  ( ph  ->  1  e.  RR )
3 perfectlem.1 . . . . . . . 8  |-  ( ph  ->  A  e.  NN )
4 perfectlem.3 . . . . . . . 8  |-  ( ph  ->  -.  2  ||  B
)
5 perfectlem.4 . . . . . . . 8  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( 2  x.  ( ( 2 ^ A )  x.  B
) ) )
63, 1, 4, 5perfectlem1 24954 . . . . . . 7  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  e.  NN  /\  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN ) )
76simp3d 1075 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN )
87nnred 11035 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  RR )
91nnred 11035 . . . . 5  |-  ( ph  ->  B  e.  RR )
107nnge1d 11063 . . . . 5  |-  ( ph  ->  1  <_  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
11 2cn 11091 . . . . . . . . . . 11  |-  2  e.  CC
12 exp1 12866 . . . . . . . . . . 11  |-  ( 2  e.  CC  ->  (
2 ^ 1 )  =  2 )
1311, 12ax-mp 5 . . . . . . . . . 10  |-  ( 2 ^ 1 )  =  2
14 df-2 11079 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
1513, 14eqtri 2644 . . . . . . . . 9  |-  ( 2 ^ 1 )  =  ( 1  +  1 )
16 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
1716a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  e.  RR )
18 1zzd 11408 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
193peano2nnd 11037 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  1 )  e.  NN )
2019nnzd 11481 . . . . . . . . . 10  |-  ( ph  ->  ( A  +  1 )  e.  ZZ )
21 1lt2 11194 . . . . . . . . . . 11  |-  1  <  2
2221a1i 11 . . . . . . . . . 10  |-  ( ph  ->  1  <  2 )
23 1re 10039 . . . . . . . . . . . 12  |-  1  e.  RR
243nnrpd 11870 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  RR+ )
25 ltaddrp 11867 . . . . . . . . . . . 12  |-  ( ( 1  e.  RR  /\  A  e.  RR+ )  -> 
1  <  ( 1  +  A ) )
2623, 24, 25sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  1  <  ( 1  +  A ) )
27 ax-1cn 9994 . . . . . . . . . . . 12  |-  1  e.  CC
283nncnd 11036 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CC )
29 addcom 10222 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3027, 28, 29sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  +  A
)  =  ( A  +  1 ) )
3126, 30breqtrd 4679 . . . . . . . . . 10  |-  ( ph  ->  1  <  ( A  +  1 ) )
32 ltexp2a 12912 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  1  e.  ZZ  /\  ( A  +  1
)  e.  ZZ )  /\  ( 1  <  2  /\  1  < 
( A  +  1 ) ) )  -> 
( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3317, 18, 20, 22, 31, 32syl32anc 1334 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ 1 )  <  ( 2 ^ ( A  + 
1 ) ) )
3415, 33syl5eqbrr 4689 . . . . . . . 8  |-  ( ph  ->  ( 1  +  1 )  <  ( 2 ^ ( A  + 
1 ) ) )
356simp1d 1073 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  NN )
3635nnred 11035 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  RR )
372, 2, 36ltaddsubd 10627 . . . . . . . 8  |-  ( ph  ->  ( ( 1  +  1 )  <  (
2 ^ ( A  +  1 ) )  <->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
3834, 37mpbid 222 . . . . . . 7  |-  ( ph  ->  1  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
39 0lt1 10550 . . . . . . . . 9  |-  0  <  1
4039a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
41 peano2rem 10348 . . . . . . . . 9  |-  ( ( 2 ^ ( A  +  1 ) )  e.  RR  ->  (
( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
4236, 41syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR )
43 expgt1 12898 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  ( A  +  1
)  e.  NN  /\  1  <  2 )  -> 
1  <  ( 2 ^ ( A  + 
1 ) ) )
4417, 19, 22, 43syl3anc 1326 . . . . . . . . 9  |-  ( ph  ->  1  <  ( 2 ^ ( A  + 
1 ) ) )
45 posdif 10521 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( 2 ^ ( A  +  1 ) )  e.  RR )  ->  ( 1  < 
( 2 ^ ( A  +  1 ) )  <->  0  <  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
4623, 36, 45sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  (
2 ^ ( A  +  1 ) )  <->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
4744, 46mpbid 222 . . . . . . . 8  |-  ( ph  ->  0  <  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
481nngt0d 11064 . . . . . . . 8  |-  ( ph  ->  0  <  B )
49 ltdiv2 10909 . . . . . . . 8  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  RR  /\  0  < 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( 1  <  (
( 2 ^ ( A  +  1 ) )  -  1 )  <-> 
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
502, 40, 42, 47, 9, 48, 49syl222anc 1342 . . . . . . 7  |-  ( ph  ->  ( 1  <  (
( 2 ^ ( A  +  1 ) )  -  1 )  <-> 
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) ) )
5138, 50mpbid 222 . . . . . 6  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  ( B  /  1 ) )
521nncnd 11036 . . . . . . 7  |-  ( ph  ->  B  e.  CC )
5352div1d 10793 . . . . . 6  |-  ( ph  ->  ( B  /  1
)  =  B )
5451, 53breqtrd 4679 . . . . 5  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  <  B )
552, 8, 9, 10, 54lelttrd 10195 . . . 4  |-  ( ph  ->  1  <  B )
56 eluz2b2 11761 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  <->  ( B  e.  NN  /\  1  < 
B ) )
571, 55, 56sylanbrc 698 . . 3  |-  ( ph  ->  B  e.  ( ZZ>= ` 
2 ) )
58 fzfid 12772 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... B
)  e.  Fin )
59 dvdsssfz1 15040 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B ) )
601, 59syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )
61 ssfi 8180 . . . . . . . . . . . 12  |-  ( ( ( 1 ... B
)  e.  Fin  /\  { x  e.  NN  |  x  ||  B }  C_  ( 1 ... B
) )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6258, 60, 61syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
6362ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  e.  Fin )
64 ssrab2 3687 . . . . . . . . . . . . 13  |-  { x  e.  NN  |  x  ||  B }  C_  NN
6564a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { x  e.  NN  |  x  ||  B }  C_  NN )
6665sselda 3603 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN )
6766nnred 11035 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  RR )
6866nnnn0d 11351 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  k  e.  NN0 )
6968nn0ge0d 11354 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { x  e.  NN  |  x  ||  B }
)  ->  0  <_  k )
70 df-tp 4182 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )
71 prssi 4353 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  B  e.  NN )  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
727, 1, 71syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
7372ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  C_  NN )
74 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  NN )
7574snssd 4340 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { n }  C_  NN )
7673, 75unssd 3789 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } )  C_  NN )
7770, 76syl5eqss 3649 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  NN )
78 eltpi 4229 . . . . . . . . . . . . 13  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  n }  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n ) )
796simp2d 1074 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  NN )
8079nnzd 11481 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ )
817nnzd 11481 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )
82 dvdsmul2 15004 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  ZZ  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  ZZ )  ->  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  (
( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
8380, 81, 82syl2anc 693 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
8479nncnd 11036 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  e.  CC )
8579nnne0d 11065 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  -  1 )  =/=  0 )
8652, 84, 85divcan2d 10803 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  B )
8783, 86breqtrd 4679 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ||  B )
88 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
x  ||  B  <->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ||  B ) )
8987, 88syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  x  ||  B
) )
9089ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  ->  x  ||  B ) )
911nnzd 11481 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  ZZ )
92 iddvds 14995 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ZZ  ->  B  ||  B )
9391, 92syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  ||  B )
94 breq1 4656 . . . . . . . . . . . . . . . 16  |-  ( x  =  B  ->  (
x  ||  B  <->  B  ||  B
) )
9593, 94syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( x  =  B  ->  x  ||  B
) )
9695ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  B  ->  x  ||  B ) )
97 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  ||  B )
98 breq1 4656 . . . . . . . . . . . . . . 15  |-  ( x  =  n  ->  (
x  ||  B  <->  n  ||  B
) )
9997, 98syl5ibrcom 237 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  =  n  ->  x  ||  B ) )
10090, 96, 993jaod 1392 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( x  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  n )  ->  x  ||  B
) )
10178, 100syl5 34 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
x  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  ->  x  ||  B
) )
102101imp 445 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  x  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  ->  x  ||  B )
10377, 102ssrabdv 3681 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  C_  { x  e.  NN  |  x  ||  B } )
10463, 67, 69, 103fsumless 14528 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
105 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
106 disjsn 4246 . . . . . . . . . . . 12  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/)  <->  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
107105, 106sylibr 224 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { n }
)  =  (/) )
10870a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { n } ) )
109 tpfi 8236 . . . . . . . . . . . 12  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin
110109a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n }  e.  Fin )
11177sselda 3603 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  NN )
112111nncnd 11036 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } )  -> 
k  e.  CC )
113107, 108, 110, 112fsumsplit 14471 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { n } k ) )
1147nncnd 11036 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )
115 id 22 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  k  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
116115sumsn 14475 . . . . . . . . . . . . . . 15  |-  ( ( ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  NN  /\  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  e.  CC )  ->  sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
1177, 114, 116syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
118 id 22 . . . . . . . . . . . . . . . 16  |-  ( k  =  B  ->  k  =  B )
119118sumsn 14475 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  NN  /\  B  e.  CC )  -> 
sum_ k  e.  { B } k  =  B )
1201, 52, 119syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ph  -> 
sum_ k  e.  { B } k  =  B )
121117, 120oveq12d 6668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } k  + 
sum_ k  e.  { B } k )  =  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B
) )
122 incom 3805 . . . . . . . . . . . . . . 15  |-  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)
1238, 54gtned 10172 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  =/=  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
124 disjsn2 4247 . . . . . . . . . . . . . . . 16  |-  ( B  =/=  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { B }  i^i  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
125123, 124syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( { B }  i^i  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) } )  =  (/) )
126122, 125syl5eqr 2670 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) }  i^i  { B }
)  =  (/) )
127 df-pr 4180 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } )
128127a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  =  ( {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) }  u.  { B } ) )
129 prfi 8235 . . . . . . . . . . . . . . 15  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin
130129a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  e.  Fin )
13172sselda 3603 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  NN )
132131nncnd 11036 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
)  ->  k  e.  CC )
133126, 128, 130, 132fsumsplit 14471 . . . . . . . . . . . . 13  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) } k  +  sum_ k  e.  { B } k ) )
13484, 52mulcld 10060 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  e.  CC )
13552, 134, 84, 85divdird 10839 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
13635nncnd 11036 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  e.  CC )
137 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  1  e.  CC )
138136, 137, 52subdird 10487 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  ( 1  x.  B ) ) )
13952mulid2d 10058 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 1  x.  B
)  =  B )
140139oveq2d 6666 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  -  (
1  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
141138, 140eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) )
142141oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  -  B ) ) )
143136, 52mulcld 10060 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  e.  CC )
14452, 143pncan3d 10395 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  x.  B
)  -  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
145142, 144eqtrd 2656 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( B  +  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  B ) )
146145oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  B )  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
147136, 52, 84, 85divassd 10836 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
148146, 147eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  +  ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
) )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
14952, 84, 85divcan3d 10806 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  B )
150149oveq2d 6666 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  ( ( ( ( 2 ^ ( A  + 
1 ) )  - 
1 )  x.  B
)  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  +  B ) )
151135, 148, 1503eqtr3d 2664 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  +  B ) )
152121, 133, 1513eqtr4d 2666 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
153152ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
15474nncnd 11036 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  CC )
155 id 22 . . . . . . . . . . . . 13  |-  ( k  =  n  ->  k  =  n )
156155sumsn 14475 . . . . . . . . . . . 12  |-  ( ( n  e.  CC  /\  n  e.  CC )  -> 
sum_ k  e.  {
n } k  =  n )
157154, 154, 156syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { n } k  =  n )
158153, 157oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
n } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
159113, 158eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  n } k  =  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
) )
1603nnnn0d 11351 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  NN0 )
161 expp1 12867 . . . . . . . . . . . . . . . . 17  |-  ( ( 2  e.  CC  /\  A  e.  NN0 )  -> 
( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
16211, 160, 161sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( ( 2 ^ A )  x.  2 ) )
163 2nn 11185 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  NN
164 nnexpcl 12873 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
165163, 160, 164sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ A
)  e.  NN )
166165nncnd 11036 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2 ^ A
)  e.  CC )
167 mulcom 10022 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2 ^ A
)  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
168166, 11, 167sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  x.  2 )  =  ( 2  x.  ( 2 ^ A ) ) )
169162, 168eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2 ^ ( A  +  1 ) )  =  ( 2  x.  ( 2 ^ A ) ) )
170169oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( 2  x.  ( 2 ^ A ) )  x.  B ) )
171 2cnd 11093 . . . . . . . . . . . . . . 15  |-  ( ph  ->  2  e.  CC )
172171, 166, 52mulassd 10063 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 2  x.  ( 2 ^ A
) )  x.  B
)  =  ( 2  x.  ( ( 2 ^ A )  x.  B ) ) )
173 2prm 15405 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  Prime
174 coprm 15423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2  e.  Prime  /\  B  e.  ZZ )  ->  ( -.  2  ||  B  <->  ( 2  gcd  B )  =  1 ) )
175173, 91, 174sylancr 695 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( -.  2  ||  B 
<->  ( 2  gcd  B
)  =  1 ) )
1764, 175mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 2  gcd  B
)  =  1 )
177 2z 11409 . . . . . . . . . . . . . . . . . . 19  |-  2  e.  ZZ
178177a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  2  e.  ZZ )
179 rpexp1i 15433 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  B  e.  ZZ  /\  A  e.  NN0 )  ->  (
( 2  gcd  B
)  =  1  -> 
( ( 2 ^ A )  gcd  B
)  =  1 ) )
180178, 91, 160, 179syl3anc 1326 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( 2  gcd 
B )  =  1  ->  ( ( 2 ^ A )  gcd 
B )  =  1 ) )
181176, 180mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 2 ^ A )  gcd  B
)  =  1 )
182 sgmmul 24926 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( 2 ^ A )  e.  NN  /\  B  e.  NN  /\  ( ( 2 ^ A )  gcd  B
)  =  1 ) )  ->  ( 1 
sigma  ( ( 2 ^ A )  x.  B
) )  =  ( ( 1  sigma  ( 2 ^ A ) )  x.  ( 1  sigma  B ) ) )
183137, 165, 1, 181, 182syl13anc 1328 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  sigma  ( ( 2 ^ A )  x.  B ) )  =  ( ( 1 
sigma  ( 2 ^ A
) )  x.  (
1  sigma  B ) ) )
184 pncan 10287 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
18528, 27, 184sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( A  + 
1 )  -  1 )  =  A )
186185oveq2d 6666 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( 2 ^ (
( A  +  1 )  -  1 ) )  =  ( 2 ^ A ) )
187186oveq2d 6666 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( 1  sigma 
( 2 ^ A
) ) )
188 1sgm2ppw 24925 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  +  1 )  e.  NN  ->  (
1  sigma  ( 2 ^ ( ( A  + 
1 )  -  1 ) ) )  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
18919, 188syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( 1  sigma  ( 2 ^ ( ( A  +  1 )  - 
1 ) ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
190187, 189eqtr3d 2658 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  sigma  ( 2 ^ A ) )  =  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )
191190oveq1d 6665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 1  sigma 
( 2 ^ A
) )  x.  (
1  sigma  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
192183, 5, 1913eqtr3d 2664 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 2  x.  (
( 2 ^ A
)  x.  B ) )  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
193170, 172, 1923eqtrd 2660 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  B
)  =  ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) ) )
194193oveq1d 6665 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  B )  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1 
sigma  B ) )  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
195 1nn0 11308 . . . . . . . . . . . . . . 15  |-  1  e.  NN0
196 sgmnncl 24873 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  NN0  /\  B  e.  NN )  ->  ( 1  sigma  B )  e.  NN )
197195, 1, 196sylancr 695 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 1  sigma  B )  e.  NN )
198197nncnd 11036 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1  sigma  B )  e.  CC )
199198, 84, 85divcan3d 10806 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( 2 ^ ( A  +  1 ) )  -  1 )  x.  ( 1  sigma  B ) )  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  ( 1  sigma  B ) )
200194, 147, 1993eqtr3d 2664 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  =  ( 1  sigma  B ) )
201 sgmval 24868 . . . . . . . . . . . 12  |-  ( ( 1  e.  CC  /\  B  e.  NN )  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^c  1 ) )
20227, 1, 201sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  sigma  B )  =  sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^c  1 ) )
203 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  {
x  e.  NN  |  x  ||  B } )
20464, 203sseldi 3601 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN )
205204nncnd 11036 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  CC )
206205cxp1d 24452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  ( k  ^c  1 )  =  k )
207206sumeq2dv 14433 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B }  (
k  ^c  1 )  =  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k )
208200, 202, 2073eqtrrd 2661 . . . . . . . . . 10  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  B } k  =  ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
209208ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
210104, 159, 2093brtr3d 4684 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
21136, 8remulcld 10070 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
212211ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR )
21374nnrpd 11870 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR+ )
214212, 213ltaddrpd 11905 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n ) )
21574nnred 11035 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  n  e.  RR )
216212, 215readdcld 10069 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  e.  RR )
217212, 216ltnled 10184 . . . . . . . . 9  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  n )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
218214, 217mpbid 222 . . . . . . . 8  |-  ( ( ( ph  /\  (
n  e.  NN  /\  n  ||  B ) )  /\  -.  n  e. 
{ ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )  ->  -.  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  n
)  <_  ( (
2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
219210, 218condan 835 . . . . . . 7  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  ->  n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
220 elpri 4197 . . . . . . 7  |-  ( n  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) )
221219, 220syl 17 . . . . . 6  |-  ( (
ph  /\  ( n  e.  NN  /\  n  ||  B ) )  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )
222221expr 643 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( n 
||  B  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  n  =  B ) ) )
223222ralrimiva 2966 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
2242, 55gtned 10172 . . . . . . . . . 10  |-  ( ph  ->  B  =/=  1 )
225224necomd 2849 . . . . . . . . 9  |-  ( ph  ->  1  =/=  B )
226 1nn 11031 . . . . . . . . . . . . 13  |-  1  e.  NN
227226a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  NN )
228 1dvds 14996 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  1  ||  B )
22991, 228syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  1  ||  B )
230 breq1 4656 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
n  ||  B  <->  1  ||  B ) )
231 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  <->  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
232 eqeq1 2626 . . . . . . . . . . . . . . 15  |-  ( n  =  1  ->  (
n  =  B  <->  1  =  B ) )
233231, 232orbi12d 746 . . . . . . . . . . . . . 14  |-  ( n  =  1  ->  (
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B )  <->  ( 1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) ) )
234230, 233imbi12d 334 . . . . . . . . . . . . 13  |-  ( n  =  1  ->  (
( n  ||  B  ->  ( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  <->  ( 1 
||  B  ->  (
1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
235234rspcv 3305 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  ( A. n  e.  NN  ( n  ||  B  -> 
( n  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) )  ->  (
1  ||  B  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  \/  1  =  B ) ) ) )
236227, 223, 229, 235syl3c 66 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  =  ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  1  =  B ) )
237236ord 392 . . . . . . . . . 10  |-  ( ph  ->  ( -.  1  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =  B ) )
238237necon1ad 2811 . . . . . . . . 9  |-  ( ph  ->  ( 1  =/=  B  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
239225, 238mpd 15 . . . . . . . 8  |-  ( ph  ->  1  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
240239eqeq2d 2632 . . . . . . 7  |-  ( ph  ->  ( n  =  1  <-> 
n  =  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
241240orbi1d 739 . . . . . 6  |-  ( ph  ->  ( ( n  =  1  \/  n  =  B )  <->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) )
242241imbi2d 330 . . . . 5  |-  ( ph  ->  ( ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  ( n  ||  B  ->  ( n  =  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
243242ralbidv 2986 . . . 4  |-  ( ph  ->  ( A. n  e.  NN  ( n  ||  B  ->  ( n  =  1  \/  n  =  B ) )  <->  A. n  e.  NN  ( n  ||  B  ->  ( n  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  n  =  B ) ) ) )
244223, 243mpbird 247 . . 3  |-  ( ph  ->  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) )
245 isprm2 15395 . . 3  |-  ( B  e.  Prime  <->  ( B  e.  ( ZZ>= `  2 )  /\  A. n  e.  NN  ( n  ||  B  -> 
( n  =  1  \/  n  =  B ) ) ) )
24657, 244, 245sylanbrc 698 . 2  |-  ( ph  ->  B  e.  Prime )
247211ltp1d 10954 . . . 4  |-  ( ph  ->  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  <  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
248 peano2re 10209 . . . . . 6  |-  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  e.  RR  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  e.  RR )
249211, 248syl 17 . . . . 5  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  e.  RR )
250211, 249ltnled 10184 . . . 4  |-  ( ph  ->  ( ( ( 2 ^ ( A  + 
1 ) )  x.  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )  <  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <->  -.  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
251247, 250mpbid 222 . . 3  |-  ( ph  ->  -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
252204nnred 11035 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  RR )
253204nnnn0d 11351 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  k  e.  NN0 )
254253nn0ge0d 11354 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  B } )  ->  0  <_  k
)
255 df-tp 4182 . . . . . . . . . 10  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } )
256 snssi 4339 . . . . . . . . . . . 12  |-  ( 1  e.  NN  ->  { 1 }  C_  NN )
257226, 256mp1i 13 . . . . . . . . . . 11  |-  ( ph  ->  { 1 }  C_  NN )
25872, 257unssd 3789 . . . . . . . . . 10  |-  ( ph  ->  ( { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B }  u.  {
1 } )  C_  NN )
259255, 258syl5eqss 3649 . . . . . . . . 9  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
260 eltpi 4229 . . . . . . . . . . 11  |-  ( x  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B ,  1 }  ->  ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 ) )
261 breq1 4656 . . . . . . . . . . . . 13  |-  ( x  =  1  ->  (
x  ||  B  <->  1  ||  B ) )
262229, 261syl5ibrcom 237 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  =  1  ->  x  ||  B
) )
26389, 95, 2623jaod 1392 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  =  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) )  \/  x  =  B  \/  x  =  1 )  ->  x  ||  B ) )
264260, 263syl5 34 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 }  ->  x  ||  B ) )
265264imp 445 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } )  ->  x  ||  B )
266259, 265ssrabdv 3681 . . . . . . . 8  |-  ( ph  ->  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  { x  e.  NN  |  x  ||  B } )
26762, 252, 254, 266fsumless 14528 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B , 
1 } k  <_  sum_ k  e.  { x  e.  NN  |  x  ||  B } k )
268267adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  <_  sum_ k  e.  {
x  e.  NN  |  x  ||  B } k )
26952, 84, 85diveq1ad 10810 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =  1  <-> 
B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
270269necon3bid 2838 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) )  =/=  1  <->  B  =/=  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )
271270biimpar 502 . . . . . . . . . . 11  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) )  =/=  1 )
272271necomd 2849 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) )
273225adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  1  =/=  B )
274272, 273nelprd 4203 . . . . . . . . 9  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  -.  1  e.  { ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ,  B } )
275 disjsn 4246 . . . . . . . . 9  |-  ( ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/)  <->  -.  1  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } )
276274, 275sylibr 224 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  i^i  { 1 } )  =  (/) )
277255a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  =  ( { ( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }  u.  { 1 } ) )
278 tpfi 8236 . . . . . . . . 9  |-  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin
279278a1i 11 . . . . . . . 8  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  e.  Fin )
280259adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 }  C_  NN )
281280sselda 3603 . . . . . . . . 9  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  NN )
282281nncnd 11036 . . . . . . . 8  |-  ( ( ( ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  /\  k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } )  ->  k  e.  CC )
283276, 277, 279, 282fsumsplit 14471 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  { 1 } k ) )
284 id 22 . . . . . . . . . . 11  |-  ( k  =  1  ->  k  =  1 )
285284sumsn 14475 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  1  e.  CC )  -> 
sum_ k  e.  {
1 } k  =  1 )
2862, 27, 285sylancl 694 . . . . . . . . 9  |-  ( ph  -> 
sum_ k  e.  {
1 } k  =  1 )
287152, 286oveq12d 6668 . . . . . . . 8  |-  ( ph  ->  ( sum_ k  e.  {
( B  /  (
( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B }
k  +  sum_ k  e.  { 1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 ) )
288287adantr 481 . . . . . . 7  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  ( sum_ k  e.  { ( B  /  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B } k  +  sum_ k  e.  {
1 } k )  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
289283, 288eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ,  B ,  1 } k  =  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 ) )
290208adantr 481 . . . . . 6  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  B }
k  =  ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) ) )
291268, 289, 2903brtr3d 4684 . . . . 5  |-  ( (
ph  /\  B  =/=  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )  ->  (
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) )
292291ex 450 . . . 4  |-  ( ph  ->  ( B  =/=  (
( 2 ^ ( A  +  1 ) )  -  1 )  ->  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  / 
( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )  +  1 )  <_  (
( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) ) ) )
293292necon1bd 2812 . . 3  |-  ( ph  ->  ( -.  ( ( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  +  1 )  <_ 
( ( 2 ^ ( A  +  1 ) )  x.  ( B  /  ( ( 2 ^ ( A  + 
1 ) )  - 
1 ) ) )  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
294251, 293mpd 15 . 2  |-  ( ph  ->  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) )
295246, 294jca 554 1  |-  ( ph  ->  ( B  e.  Prime  /\  B  =  ( ( 2 ^ ( A  +  1 ) )  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   {crab 2916    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Fincfn 7955   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   ...cfz 12326   ^cexp 12860   sum_csu 14416    || cdvds 14983    gcd cgcd 15216   Primecprime 15385    ^c ccxp 24302    sigma csgm 24822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-sgm 24828
This theorem is referenced by:  perfect  24956
  Copyright terms: Public domain W3C validator