Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   Unicode version

Theorem cvmlift2lem11 31295
Description: Lemma for cvmlift2 31298. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b  |-  B  = 
U. C
cvmlift2.f  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
cvmlift2.g  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
cvmlift2.p  |-  ( ph  ->  P  e.  B )
cvmlift2.i  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
cvmlift2.h  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
cvmlift2.k  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
cvmlift2.m  |-  M  =  { z  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) }
cvmlift2lem11.1  |-  ( ph  ->  U  e.  II )
cvmlift2lem11.2  |-  ( ph  ->  V  e.  II )
cvmlift2lem11.3  |-  ( ph  ->  Y  e.  V )
cvmlift2lem11.4  |-  ( ph  ->  Z  e.  V )
cvmlift2lem11.5  |-  ( ph  ->  ( E. w  e.  V  ( K  |`  ( U  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) ) )
Assertion
Ref Expression
cvmlift2lem11  |-  ( ph  ->  ( ( U  X.  { Y } )  C_  M  ->  ( U  X.  { Z } )  C_  M ) )
Distinct variable groups:    w, f, x, y, z, F    ph, f, w, x, y, z    x, M, y, z    f, J, w, x, y, z   
w, U, z    f, G, w, x, y, z   
w, V    f, H, w, x, y, z    z, Z    C, f, w, x, y, z    P, f, x, y, z    w, B, x, y, z    f, Y, w, x, y, z   
f, K, w, x, y, z
Allowed substitution hints:    B( f)    P( w)    U( x, y, f)    M( w, f)    V( x, y, z, f)    Z( x, y, w, f)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7  |-  ( ph  ->  U  e.  II )
21adantr 481 . . . . . 6  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  U  e.  II )
3 elssuni 4467 . . . . . . 7  |-  ( U  e.  II  ->  U  C_ 
U. II )
4 iiuni 22684 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
53, 4syl6sseqr 3652 . . . . . 6  |-  ( U  e.  II  ->  U  C_  ( 0 [,] 1
) )
62, 5syl 17 . . . . 5  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  U  C_  ( 0 [,] 1 ) )
7 cvmlift2lem11.4 . . . . . . . 8  |-  ( ph  ->  Z  e.  V )
8 cvmlift2lem11.2 . . . . . . . 8  |-  ( ph  ->  V  e.  II )
9 elunii 4441 . . . . . . . . 9  |-  ( ( Z  e.  V  /\  V  e.  II )  ->  Z  e.  U. II )
109, 4syl6eleqr 2712 . . . . . . . 8  |-  ( ( Z  e.  V  /\  V  e.  II )  ->  Z  e.  ( 0 [,] 1 ) )
117, 8, 10syl2anc 693 . . . . . . 7  |-  ( ph  ->  Z  e.  ( 0 [,] 1 ) )
1211adantr 481 . . . . . 6  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Z  e.  ( 0 [,] 1 ) )
1312snssd 4340 . . . . 5  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Z }  C_  (
0 [,] 1 ) )
14 xpss12 5225 . . . . 5  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Z }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Z } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
156, 13, 14syl2anc 693 . . . 4  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
16 cvmlift2lem11.3 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  V )
1716adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Y  e.  V )
18 cvmlift2.b . . . . . . . . . . . . 13  |-  B  = 
U. C
19 cvmlift2.f . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( C CovMap  J ) )
20 cvmlift2.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  J ) )
21 cvmlift2.p . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  B )
22 cvmlift2.i . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  P
)  =  ( 0 G 0 ) )
23 cvmlift2.h . . . . . . . . . . . . 13  |-  H  =  ( iota_ f  e.  ( II  Cn  C ) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 )  |->  ( z G 0 ) )  /\  ( f `
 0 )  =  P ) )
24 cvmlift2.k . . . . . . . . . . . . 13  |-  K  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( iota_ f  e.  ( II  Cn  C
) ( ( F  o.  f )  =  ( z  e.  ( 0 [,] 1 ) 
|->  ( x G z ) )  /\  (
f `  0 )  =  ( H `  x ) ) ) `
 y ) )
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 31289 . . . . . . . . . . . 12  |-  ( ph  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> B )
2625adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
278adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  V  e.  II )
28 elssuni 4467 . . . . . . . . . . . . . . . 16  |-  ( V  e.  II  ->  V  C_ 
U. II )
2928, 4syl6sseqr 3652 . . . . . . . . . . . . . . 15  |-  ( V  e.  II  ->  V  C_  ( 0 [,] 1
) )
3027, 29syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  V  C_  ( 0 [,] 1 ) )
3130, 17sseldd 3604 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Y  e.  ( 0 [,] 1 ) )
3231snssd 4340 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Y }  C_  (
0 [,] 1 ) )
33 xpss12 5225 . . . . . . . . . . . 12  |-  ( ( U  C_  ( 0 [,] 1 )  /\  { Y }  C_  (
0 [,] 1 ) )  ->  ( U  X.  { Y } ) 
C_  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) )
346, 32, 33syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )
3526, 34fssresd 6071 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  { Y }
) ) : ( U  X.  { Y } ) --> B )
3634adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
37 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  z  e.  ( U  X.  { Y } ) )
38 simpr 477 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  M
)
39 cvmlift2.m . . . . . . . . . . . . . . 15  |-  M  =  { z  e.  ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  |  K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) }
4038, 39syl6sseq 3651 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) } )
41 ssrab 3680 . . . . . . . . . . . . . . 15  |-  ( ( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) }  <->  ( ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) )  /\  A. z  e.  ( U  X.  { Y }
) K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) ) )
4241simprbi 480 . . . . . . . . . . . . . 14  |-  ( ( U  X.  { Y } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) }  ->  A. z  e.  ( U  X.  { Y } ) K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
4340, 42syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  A. z  e.  ( U  X.  { Y }
) K  e.  ( ( ( II  tX  II )  CnP  C ) `
 z ) )
4443r19.21bi 2932 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
45 iitopon 22682 . . . . . . . . . . . . . . 15  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
46 txtopon 21394 . . . . . . . . . . . . . . 15  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  II  e.  (TopOn `  ( 0 [,] 1 ) ) )  ->  ( II  tX  II )  e.  (TopOn `  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
4745, 45, 46mp2an 708 . . . . . . . . . . . . . 14  |-  ( II 
tX  II )  e.  (TopOn `  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
4847toponunii 20721 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
4948cnpresti 21092 . . . . . . . . . . . 12  |-  ( ( ( U  X.  { Y } )  C_  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) )  /\  z  e.  ( U  X.  { Y } )  /\  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )  ->  ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  CnP 
C ) `  z
) )
5036, 37, 44, 49syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Y }
) )  ->  ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  CnP 
C ) `  z
) )
5150ralrimiva 2966 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
)
52 resttopon 20965 . . . . . . . . . . . 12  |-  ( ( ( II  tX  II )  e.  (TopOn `  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  /\  ( U  X.  { Y }
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  ->  ( ( II 
tX  II )t  ( U  X.  { Y }
) )  e.  (TopOn `  ( U  X.  { Y } ) ) )
5347, 34, 52sylancr 695 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( II  tX  II )t  ( U  X.  { Y } ) )  e.  (TopOn `  ( U  X.  { Y }
) ) )
54 cvmtop1 31242 . . . . . . . . . . . . . 14  |-  ( F  e.  ( C CovMap  J
)  ->  C  e.  Top )
5519, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  Top )
5655adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  C  e.  Top )
5718toptopon 20722 . . . . . . . . . . . 12  |-  ( C  e.  Top  <->  C  e.  (TopOn `  B ) )
5856, 57sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  C  e.  (TopOn `  B
) )
59 cncnp 21084 . . . . . . . . . . 11  |-  ( ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  e.  (TopOn `  ( U  X.  { Y }
) )  /\  C  e.  (TopOn `  B )
)  ->  ( ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  Cn  C
)  <->  ( ( K  |`  ( U  X.  { Y } ) ) : ( U  X.  { Y } ) --> B  /\  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
) ) )
6053, 58, 59syl2anc 693 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { Y }
) )  Cn  C
)  <->  ( ( K  |`  ( U  X.  { Y } ) ) : ( U  X.  { Y } ) --> B  /\  A. z  e.  ( U  X.  { Y }
) ( K  |`  ( U  X.  { Y } ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  CnP  C
) `  z )
) ) )
6135, 51, 60mpbir2and 957 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) )
62 sneq 4187 . . . . . . . . . . . . 13  |-  ( w  =  Y  ->  { w }  =  { Y } )
6362xpeq2d 5139 . . . . . . . . . . . 12  |-  ( w  =  Y  ->  ( U  X.  { w }
)  =  ( U  X.  { Y }
) )
6463reseq2d 5396 . . . . . . . . . . 11  |-  ( w  =  Y  ->  ( K  |`  ( U  X.  { w } ) )  =  ( K  |`  ( U  X.  { Y } ) ) )
6563oveq2d 6666 . . . . . . . . . . . 12  |-  ( w  =  Y  ->  (
( II  tX  II )t  ( U  X.  { w } ) )  =  ( ( II  tX  II )t  ( U  X.  { Y } ) ) )
6665oveq1d 6665 . . . . . . . . . . 11  |-  ( w  =  Y  ->  (
( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C )  =  ( ( ( II  tX  II )t  ( U  X.  { Y }
) )  Cn  C
) )
6764, 66eleq12d 2695 . . . . . . . . . 10  |-  ( w  =  Y  ->  (
( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C )  <-> 
( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) ) )
6867rspcev 3309 . . . . . . . . 9  |-  ( ( Y  e.  V  /\  ( K  |`  ( U  X.  { Y }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { Y } ) )  Cn  C ) )  ->  E. w  e.  V  ( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C ) )
6917, 61, 68syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  E. w  e.  V  ( K  |`  ( U  X.  { w }
) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w } ) )  Cn  C ) )
70 cvmlift2lem11.5 . . . . . . . . 9  |-  ( ph  ->  ( E. w  e.  V  ( K  |`  ( U  X.  { w } ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  { w }
) )  Cn  C
)  ->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) ) )
7170imp 445 . . . . . . . 8  |-  ( (
ph  /\  E. w  e.  V  ( K  |`  ( U  X.  {
w } ) )  e.  ( ( ( II  tX  II )t  ( U  X.  { w }
) )  Cn  C
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  V ) )  Cn  C ) )
7269, 71syldan 487 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C ) )
7372adantr 481 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( II 
tX  II )t  ( U  X.  V ) )  Cn  C ) )
747adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  Z  e.  V )
7574snssd 4340 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  { Z }  C_  V
)
76 xpss2 5229 . . . . . . . . 9  |-  ( { Z }  C_  V  ->  ( U  X.  { Z } )  C_  ( U  X.  V ) )
7775, 76syl 17 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  ( U  X.  V ) )
78 iitop 22683 . . . . . . . . . 10  |-  II  e.  Top
7978, 78txtopi 21393 . . . . . . . . 9  |-  ( II 
tX  II )  e. 
Top
80 xpss12 5225 . . . . . . . . . 10  |-  ( ( U  C_  ( 0 [,] 1 )  /\  V  C_  ( 0 [,] 1 ) )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
816, 30, 80syl2anc 693 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
8248restuni 20966 . . . . . . . . 9  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  ->  ( U  X.  V )  = 
U. ( ( II 
tX  II )t  ( U  X.  V ) ) )
8379, 81, 82sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  =  U. (
( II  tX  II )t  ( U  X.  V
) ) )
8477, 83sseqtrd 3641 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  U. (
( II  tX  II )t  ( U  X.  V
) ) )
8584sselda 3603 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  z  e.  U. ( ( II 
tX  II )t  ( U  X.  V ) ) )
86 eqid 2622 . . . . . . 7  |-  U. (
( II  tX  II )t  ( U  X.  V
) )  =  U. ( ( II  tX  II )t  ( U  X.  V ) )
8786cncnpi 21082 . . . . . 6  |-  ( ( ( K  |`  ( U  X.  V ) )  e.  ( ( ( II  tX  II )t  ( U  X.  V ) )  Cn  C )  /\  z  e.  U. (
( II  tX  II )t  ( U  X.  V
) ) )  -> 
( K  |`  ( U  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  V
) )  CnP  C
) `  z )
)
8873, 85, 87syl2anc 693 . . . . 5  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  |`  ( U  X.  V ) )  e.  ( ( ( ( II  tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) )
8979a1i 11 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  (
II  tX  II )  e.  Top )
9081adantr 481 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( U  X.  V )  C_  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
9178a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  ->  II  e.  Top )
92 txopn 21405 . . . . . . . . . 10  |-  ( ( ( II  e.  Top  /\  II  e.  Top )  /\  ( U  e.  II  /\  V  e.  II ) )  ->  ( U  X.  V )  e.  ( II  tX  II ) )
9391, 91, 2, 27, 92syl22anc 1327 . . . . . . . . 9  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  V
)  e.  ( II 
tX  II ) )
94 isopn3i 20886 . . . . . . . . 9  |-  ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V )  e.  ( II  tX  II ) )  ->  (
( int `  (
II  tX  II )
) `  ( U  X.  V ) )  =  ( U  X.  V
) )
9579, 93, 94sylancr 695 . . . . . . . 8  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( ( int `  (
II  tX  II )
) `  ( U  X.  V ) )  =  ( U  X.  V
) )
9677, 95sseqtr4d 3642 . . . . . . 7  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  (
( int `  (
II  tX  II )
) `  ( U  X.  V ) ) )
9796sselda 3603 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  z  e.  ( ( int `  (
II  tX  II )
) `  ( U  X.  V ) ) )
9825ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B )
9948, 18cnprest 21093 . . . . . 6  |-  ( ( ( ( II  tX  II )  e.  Top  /\  ( U  X.  V
)  C_  ( (
0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  /\  ( z  e.  ( ( int `  (
II  tX  II )
) `  ( U  X.  V ) )  /\  K : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> B ) )  ->  ( K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
)  <->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( ( II 
tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) ) )
10089, 90, 97, 98, 99syl22anc 1327 . . . . 5  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  ( K  e.  ( (
( II  tX  II )  CnP  C ) `  z )  <->  ( K  |`  ( U  X.  V
) )  e.  ( ( ( ( II 
tX  II )t  ( U  X.  V ) )  CnP  C ) `  z ) ) )
10188, 100mpbird 247 . . . 4  |-  ( ( ( ph  /\  ( U  X.  { Y }
)  C_  M )  /\  z  e.  ( U  X.  { Z }
) )  ->  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) )
10215, 101ssrabdv 3681 . . 3  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  { z  e.  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  |  K  e.  ( ( ( II 
tX  II )  CnP 
C ) `  z
) } )
103102, 39syl6sseqr 3652 . 2  |-  ( (
ph  /\  ( U  X.  { Y } ) 
C_  M )  -> 
( U  X.  { Z } )  C_  M
)
104103ex 450 1  |-  ( ph  ->  ( ( U  X.  { Y } )  C_  M  ->  ( U  X.  { Z } )  C_  M ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   {csn 4177   U.cuni 4436    |-> cmpt 4729    X. cxp 5112    |` cres 5116    o. ccom 5118   -->wf 5884   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937   [,]cicc 12178   ↾t crest 16081   Topctop 20698  TopOnctopon 20715   intcnt 20821    Cn ccn 21028    CnP ccnp 21029    tX ctx 21363   IIcii 22678   CovMap ccvm 31237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-cmp 21190  df-conn 21215  df-lly 21269  df-nlly 21270  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127  df-ii 22680  df-htpy 22769  df-phtpy 22770  df-phtpc 22791  df-pconn 31203  df-sconn 31204  df-cvm 31238
This theorem is referenced by:  cvmlift2lem12  31296
  Copyright terms: Public domain W3C validator