| Step | Hyp | Ref
| Expression |
| 1 | | fvex 6201 |
. . . . . . . . 9
     |
| 2 | 1 | rabex 4813 |
. . . . . . . 8
             
 |
| 3 | | simp2l 1087 |
. . . . . . . . . . 11
   IDomn   SubGrp  SubGrp  
           SubGrp    |
| 4 | | eqid 2622 |
. . . . . . . . . . . 12
         |
| 5 | 4 | subgss 17595 |
. . . . . . . . . . 11
 SubGrp 
      |
| 6 | 3, 5 | syl 17 |
. . . . . . . . . 10
   IDomn   SubGrp  SubGrp  
                 |
| 7 | | simpl2l 1114 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
SubGrp    |
| 8 | | simp3l 1089 |
. . . . . . . . . . . . . . 15
   IDomn   SubGrp  SubGrp  
                 |
| 9 | | simp1r 1086 |
. . . . . . . . . . . . . . . 16
   IDomn   SubGrp  SubGrp  
             |
| 10 | 9 | nnnn0d 11351 |
. . . . . . . . . . . . . . 15
   IDomn   SubGrp  SubGrp  
             |
| 11 | 8, 10 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
   IDomn   SubGrp  SubGrp  
                 |
| 12 | | vex 3203 |
. . . . . . . . . . . . . . 15
 |
| 13 | | hashclb 13149 |
. . . . . . . . . . . . . . 15
 
       |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . . . . . . 14

      |
| 15 | 11, 14 | sylibr 224 |
. . . . . . . . . . . . 13
   IDomn   SubGrp  SubGrp  
             |
| 16 | 15 | adantr 481 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
  |
| 17 | | simpr 477 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
  |
| 18 | | eqid 2622 |
. . . . . . . . . . . . 13
         |
| 19 | 18 | odsubdvds 17986 |
. . . . . . . . . . . 12
  SubGrp                 |
| 20 | 7, 16, 17, 19 | syl3anc 1326 |
. . . . . . . . . . 11
    IDomn
  SubGrp 
SubGrp              
              |
| 21 | 8 | adantr 481 |
. . . . . . . . . . 11
    IDomn
  SubGrp 
SubGrp              
      |
| 22 | 20, 21 | breqtrd 4679 |
. . . . . . . . . 10
    IDomn
  SubGrp 
SubGrp              
          |
| 23 | 6, 22 | ssrabdv 3681 |
. . . . . . . . 9
   IDomn   SubGrp  SubGrp  
                           |
| 24 | | simp2r 1088 |
. . . . . . . . . . 11
   IDomn   SubGrp  SubGrp  
           SubGrp    |
| 25 | 4 | subgss 17595 |
. . . . . . . . . . 11
 SubGrp 
      |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . 10
   IDomn   SubGrp  SubGrp  
                 |
| 27 | | simpl2r 1115 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
SubGrp    |
| 28 | | simp3r 1090 |
. . . . . . . . . . . . . . 15
   IDomn   SubGrp  SubGrp  
                 |
| 29 | 28, 10 | eqeltrd 2701 |
. . . . . . . . . . . . . 14
   IDomn   SubGrp  SubGrp  
                 |
| 30 | | vex 3203 |
. . . . . . . . . . . . . . 15
 |
| 31 | | hashclb 13149 |
. . . . . . . . . . . . . . 15
 
       |
| 32 | 30, 31 | ax-mp 5 |
. . . . . . . . . . . . . 14

      |
| 33 | 29, 32 | sylibr 224 |
. . . . . . . . . . . . 13
   IDomn   SubGrp  SubGrp  
             |
| 34 | 33 | adantr 481 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
  |
| 35 | | simpr 477 |
. . . . . . . . . . . 12
    IDomn
  SubGrp 
SubGrp              
  |
| 36 | 18 | odsubdvds 17986 |
. . . . . . . . . . . 12
  SubGrp                 |
| 37 | 27, 34, 35, 36 | syl3anc 1326 |
. . . . . . . . . . 11
    IDomn
  SubGrp 
SubGrp              
              |
| 38 | 28 | adantr 481 |
. . . . . . . . . . 11
    IDomn
  SubGrp 
SubGrp              
      |
| 39 | 37, 38 | breqtrd 4679 |
. . . . . . . . . 10
    IDomn
  SubGrp 
SubGrp              
          |
| 40 | 26, 39 | ssrabdv 3681 |
. . . . . . . . 9
   IDomn   SubGrp  SubGrp  
                           |
| 41 | 23, 40 | unssd 3789 |
. . . . . . . 8
   IDomn   SubGrp  SubGrp  
                             |
| 42 | | ssdomg 8001 |
. . . . . . . 8
                               
                   |
| 43 | 2, 41, 42 | mpsyl 68 |
. . . . . . 7
   IDomn   SubGrp  SubGrp  
                             |
| 44 | | idomsubgmo.g |
. . . . . . . . . . 11
 mulGrp  ↾s Unit    |
| 45 | 44, 4, 18 | idomodle 37774 |
. . . . . . . . . 10
  IDomn
                     |
| 46 | 45 | 3ad2ant1 1082 |
. . . . . . . . 9
   IDomn   SubGrp  SubGrp  
                               |
| 47 | 46, 8 | breqtrrd 4681 |
. . . . . . . 8
   IDomn   SubGrp  SubGrp  
                                   |
| 48 | 2 | a1i 11 |
. . . . . . . . . 10
   IDomn   SubGrp  SubGrp  
                        
  |
| 49 | | hashbnd 13123 |
. . . . . . . . . 10
               
   
                      
             
  |
| 50 | 48, 11, 47, 49 | syl3anc 1326 |
. . . . . . . . 9
   IDomn   SubGrp  SubGrp  
                        
  |
| 51 | | hashdom 13168 |
. . . . . . . . 9
               
                       
             
   |
| 52 | 50, 12, 51 | sylancl 694 |
. . . . . . . 8
   IDomn   SubGrp  SubGrp  
                                 
             
   |
| 53 | 47, 52 | mpbid 222 |
. . . . . . 7
   IDomn   SubGrp  SubGrp  
                        
  |
| 54 | | domtr 8009 |
. . . . . . 7
                 
             
     |
| 55 | 43, 53, 54 | syl2anc 693 |
. . . . . 6
   IDomn   SubGrp  SubGrp  
               |
| 56 | 12, 30 | unex 6956 |
. . . . . . 7
   |
| 57 | | ssun1 3776 |
. . . . . . 7
   |
| 58 | | ssdomg 8001 |
. . . . . . 7
   
       |
| 59 | 56, 57, 58 | mp2 9 |
. . . . . 6
   |
| 60 | | sbth 8080 |
. . . . . 6
           |
| 61 | 55, 59, 60 | sylancl 694 |
. . . . 5
   IDomn   SubGrp  SubGrp  
               |
| 62 | 8, 28 | eqtr4d 2659 |
. . . . . . 7
   IDomn   SubGrp  SubGrp  
                     |
| 63 | | hashen 13135 |
. . . . . . . 8
 
         
   |
| 64 | 15, 33, 63 | syl2anc 693 |
. . . . . . 7
   IDomn   SubGrp  SubGrp  
                       |
| 65 | 62, 64 | mpbid 222 |
. . . . . 6
   IDomn   SubGrp  SubGrp  
             |
| 66 | | fiuneneq 37775 |
. . . . . 6
 
       |
| 67 | 65, 15, 66 | syl2anc 693 |
. . . . 5
   IDomn   SubGrp  SubGrp  
             
   |
| 68 | 61, 67 | mpbid 222 |
. . . 4
   IDomn   SubGrp  SubGrp  
             |
| 69 | 68 | 3expia 1267 |
. . 3
   IDomn   SubGrp  SubGrp                  |
| 70 | 69 | ralrimivva 2971 |
. 2
  IDomn
  SubGrp   
SubGrp                 |
| 71 | | fveq2 6191 |
. . . 4
           |
| 72 | 71 | eqeq1d 2624 |
. . 3
     
       |
| 73 | 72 | rmo4 3399 |
. 2
  SubGrp       
SubGrp    SubGrp                 |
| 74 | 70, 73 | sylibr 224 |
1
  IDomn
 
SubGrp         |