Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem62 Structured version   Visualization version   Unicode version

Theorem stoweidlem62 40279
Description: This theorem proves the Stone Weierstrass theorem for the non-trivial case in which T is nonempty. The proof follows [BrosowskiDeutsh] p. 89 (through page 92). (Contributed by Glauco Siliprandi, 20-Apr-2017.) (Revised by AV, 13-Sep-2020.)
Hypotheses
Ref Expression
stoweidlem62.1  |-  F/_ t F
stoweidlem62.2  |-  F/ f
ph
stoweidlem62.3  |-  F/ t
ph
stoweidlem62.4  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) )
stoweidlem62.5  |-  K  =  ( topGen `  ran  (,) )
stoweidlem62.6  |-  T  = 
U. J
stoweidlem62.7  |-  ( ph  ->  J  e.  Comp )
stoweidlem62.8  |-  C  =  ( J  Cn  K
)
stoweidlem62.9  |-  ( ph  ->  A  C_  C )
stoweidlem62.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem62.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem62.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem62.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem62.14  |-  ( ph  ->  F  e.  C )
stoweidlem62.15  |-  ( ph  ->  E  e.  RR+ )
stoweidlem62.16  |-  ( ph  ->  T  =/=  (/) )
stoweidlem62.17  |-  ( ph  ->  E  <  ( 1  /  3 ) )
Assertion
Ref Expression
stoweidlem62  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Distinct variable groups:    f, g,
t, A    f, q,
r, x, t, A   
f, E, g, t   
f, F, g    f, H, g    f, J, r, t    T, f, g, t    ph, f, g    E, q, r, x    H, q, r, x    T, q, r, x    ph, q,
r, x    t, K    x, F
Allowed substitution hints:    ph( t)    C( x, t, f, g, r, q)    F( t, r, q)    H( t)    J( x, g, q)    K( x, f, g, r, q)

Proof of Theorem stoweidlem62
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 stoweidlem62.4 . . . . 5  |-  H  =  ( t  e.  T  |->  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) )
2 nfmpt1 4747 . . . . 5  |-  F/_ t
( t  e.  T  |->  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) )
31, 2nfcxfr 2762 . . . 4  |-  F/_ t H
4 stoweidlem62.3 . . . 4  |-  F/ t
ph
5 stoweidlem62.5 . . . 4  |-  K  =  ( topGen `  ran  (,) )
6 stoweidlem62.7 . . . 4  |-  ( ph  ->  J  e.  Comp )
7 stoweidlem62.6 . . . 4  |-  T  = 
U. J
8 stoweidlem62.16 . . . 4  |-  ( ph  ->  T  =/=  (/) )
9 stoweidlem62.8 . . . 4  |-  C  =  ( J  Cn  K
)
10 stoweidlem62.9 . . . 4  |-  ( ph  ->  A  C_  C )
11 eleq1 2689 . . . . . . 7  |-  ( g  =  h  ->  (
g  e.  A  <->  h  e.  A ) )
12113anbi3d 1405 . . . . . 6  |-  ( g  =  h  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  f  e.  A  /\  h  e.  A )
) )
13 fveq1 6190 . . . . . . . . 9  |-  ( g  =  h  ->  (
g `  t )  =  ( h `  t ) )
1413oveq2d 6666 . . . . . . . 8  |-  ( g  =  h  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( f `
 t )  +  ( h `  t
) ) )
1514mpteq2dv 4745 . . . . . . 7  |-  ( g  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) ) )
1615eleq1d 2686 . . . . . 6  |-  ( g  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( f `  t
)  +  ( h `
 t ) ) )  e.  A ) )
1712, 16imbi12d 334 . . . . 5  |-  ( g  =  h  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  f  e.  A  /\  h  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) )  e.  A
) ) )
18 stoweidlem62.10 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1917, 18chvarv 2263 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  h  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( h `  t ) ) )  e.  A )
2013oveq2d 6666 . . . . . . . 8  |-  ( g  =  h  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( f `
 t )  x.  ( h `  t
) ) )
2120mpteq2dv 4745 . . . . . . 7  |-  ( g  =  h  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( f `  t )  x.  ( h `  t ) ) ) )
2221eleq1d 2686 . . . . . 6  |-  ( g  =  h  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( f `  t
)  x.  ( h `
 t ) ) )  e.  A ) )
2312, 22imbi12d 334 . . . . 5  |-  ( g  =  h  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  f  e.  A  /\  h  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
h `  t )
) )  e.  A
) ) )
24 stoweidlem62.11 . . . . 5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2523, 24chvarv 2263 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  h  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( h `  t ) ) )  e.  A )
26 stoweidlem62.12 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
27 stoweidlem62.13 . . . 4  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
28 stoweidlem62.1 . . . . . 6  |-  F/_ t F
2928nfrn 5368 . . . . . . 7  |-  F/_ t ran  F
30 nfcv 2764 . . . . . . 7  |-  F/_ t RR
31 nfcv 2764 . . . . . . 7  |-  F/_ t  <
3229, 30, 31nfinf 8388 . . . . . 6  |-  F/_ tinf ( ran  F ,  RR ,  <  )
33 eqid 2622 . . . . . 6  |-  ( T  X.  { -uinf ( ran 
F ,  RR ,  <  ) } )  =  ( T  X.  { -uinf ( ran  F ,  RR ,  <  ) } )
34 cmptop 21198 . . . . . . 7  |-  ( J  e.  Comp  ->  J  e. 
Top )
356, 34syl 17 . . . . . 6  |-  ( ph  ->  J  e.  Top )
36 stoweidlem62.14 . . . . . 6  |-  ( ph  ->  F  e.  C )
3736, 9syl6eleq 2711 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
3828, 4, 7, 5, 6, 37, 8stoweidlem29 40246 . . . . . . 7  |-  ( ph  ->  (inf ( ran  F ,  RR ,  <  )  e.  ran  F  /\ inf ( ran  F ,  RR ,  <  )  e.  RR  /\  A. t  e.  T inf ( ran  F ,  RR ,  <  )  <_  ( F `  t ) ) )
3938simp2d 1074 . . . . . 6  |-  ( ph  -> inf ( ran  F ,  RR ,  <  )  e.  RR )
4028, 32, 4, 7, 33, 5, 35, 9, 36, 39stoweidlem47 40264 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) )  e.  C )
411, 40syl5eqel 2705 . . . 4  |-  ( ph  ->  H  e.  C )
4238simp3d 1075 . . . . . . . . 9  |-  ( ph  ->  A. t  e.  T inf ( ran  F ,  RR ,  <  )  <_  ( F `  t )
)
4342r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  -> inf ( ran 
F ,  RR ,  <  )  <_  ( F `  t ) )
445, 7, 9, 36fcnre 39184 . . . . . . . . . 10  |-  ( ph  ->  F : T --> RR )
4544ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
4639adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  -> inf ( ran 
F ,  RR ,  <  )  e.  RR )
4745, 46subge0d 10617 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
0  <_  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) )  <-> inf ( ran  F ,  RR ,  <  )  <_  ( F `  t )
) )
4843, 47mpbird 247 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  0  <_  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) )
49 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
5045, 46resubcld 10458 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  - inf ( ran  F ,  RR ,  <  ) )  e.  RR )
511fvmpt2 6291 . . . . . . . 8  |-  ( ( t  e.  T  /\  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) )  e.  RR )  ->  ( H `  t )  =  ( ( F `  t
)  - inf ( ran  F ,  RR ,  <  ) ) )
5249, 50, 51syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  ( ( F `
 t )  - inf ( ran  F ,  RR ,  <  ) ) )
5348, 52breqtrrd 4681 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  0  <_  ( H `  t
) )
5453ex 450 . . . . 5  |-  ( ph  ->  ( t  e.  T  ->  0  <_  ( H `  t ) ) )
554, 54ralrimi 2957 . . . 4  |-  ( ph  ->  A. t  e.  T 
0  <_  ( H `  t ) )
56 stoweidlem62.15 . . . . 5  |-  ( ph  ->  E  e.  RR+ )
5756rphalfcld 11884 . . . 4  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
5856rpred 11872 . . . . . 6  |-  ( ph  ->  E  e.  RR )
5958rehalfcld 11279 . . . . 5  |-  ( ph  ->  ( E  /  2
)  e.  RR )
60 3re 11094 . . . . . . 7  |-  3  e.  RR
61 3ne0 11115 . . . . . . 7  |-  3  =/=  0
6260, 61rereccli 10790 . . . . . 6  |-  ( 1  /  3 )  e.  RR
6362a1i 11 . . . . 5  |-  ( ph  ->  ( 1  /  3
)  e.  RR )
64 rphalflt 11860 . . . . . 6  |-  ( E  e.  RR+  ->  ( E  /  2 )  < 
E )
6556, 64syl 17 . . . . 5  |-  ( ph  ->  ( E  /  2
)  <  E )
66 stoweidlem62.17 . . . . 5  |-  ( ph  ->  E  <  ( 1  /  3 ) )
6759, 58, 63, 65, 66lttrd 10198 . . . 4  |-  ( ph  ->  ( E  /  2
)  <  ( 1  /  3 ) )
683, 4, 5, 6, 7, 8, 9, 10, 19, 25, 26, 27, 41, 55, 57, 67stoweidlem61 40278 . . 3  |-  ( ph  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  ( 2  x.  ( E  /  2
) ) )
69 nfra1 2941 . . . . . . 7  |-  F/ t A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  ( 2  x.  ( E  /  2
) )
704, 69nfan 1828 . . . . . 6  |-  F/ t ( ph  /\  A. t  e.  T  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  (
2  x.  ( E  /  2 ) ) )
71 rsp 2929 . . . . . . 7  |-  ( A. t  e.  T  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  (
2  x.  ( E  /  2 ) )  ->  ( t  e.  T  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) ) )
7256rpcnd 11874 . . . . . . . . . 10  |-  ( ph  ->  E  e.  CC )
73 2cnd 11093 . . . . . . . . . 10  |-  ( ph  ->  2  e.  CC )
74 2ne0 11113 . . . . . . . . . . 11  |-  2  =/=  0
7574a1i 11 . . . . . . . . . 10  |-  ( ph  ->  2  =/=  0 )
7672, 73, 75divcan2d 10803 . . . . . . . . 9  |-  ( ph  ->  ( 2  x.  ( E  /  2 ) )  =  E )
7776breq2d 4665 . . . . . . . 8  |-  ( ph  ->  ( ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  <->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )
7877biimpd 219 . . . . . . 7  |-  ( ph  ->  ( ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  -> 
( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  E ) )
7971, 78sylan9r 690 . . . . . 6  |-  ( (
ph  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) )  ->  ( t  e.  T  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )
8070, 79ralrimi 2957 . . . . 5  |-  ( (
ph  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  (
2  x.  ( E  /  2 ) ) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
8180ex 450 . . . 4  |-  ( ph  ->  ( A. t  e.  T  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
8281reximdv 3016 . . 3  |-  ( ph  ->  ( E. h  e.  A  A. t  e.  T  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) )  <  ( 2  x.  ( E  / 
2 ) )  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
8368, 82mpd 15 . 2  |-  ( ph  ->  E. h  e.  A  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E )
84 nfmpt1 4747 . . 3  |-  F/_ t
( t  e.  T  |->  ( ( h `  t )  + inf ( ran  F ,  RR ,  <  ) ) )
85 nfcv 2764 . . 3  |-  F/_ t
h
86 nfv 1843 . . . . 5  |-  F/ t  h  e.  A
87 nfra1 2941 . . . . 5  |-  F/ t A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E
8886, 87nfan 1828 . . . 4  |-  F/ t ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E )
894, 88nfan 1828 . . 3  |-  F/ t ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )
90 eqid 2622 . . 3  |-  ( t  e.  T  |->  ( ( h `  t )  + inf ( ran  F ,  RR ,  <  )
) )  =  ( t  e.  T  |->  ( ( h `  t
)  + inf ( ran  F ,  RR ,  <  ) ) )
9144adantr 481 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  F : T --> RR )
9239adantr 481 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  -> inf ( ran 
F ,  RR ,  <  )  e.  RR )
93183adant1r 1319 . . 3  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
9426adantlr 751 . . 3  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
95 stoweidlem62.2 . . . . 5  |-  F/ f
ph
9610sseld 3602 . . . . . . . 8  |-  ( ph  ->  ( f  e.  A  ->  f  e.  C ) )
979eleq2i 2693 . . . . . . . 8  |-  ( f  e.  C  <->  f  e.  ( J  Cn  K
) )
9896, 97syl6ib 241 . . . . . . 7  |-  ( ph  ->  ( f  e.  A  ->  f  e.  ( J  Cn  K ) ) )
99 eqid 2622 . . . . . . . 8  |-  U. J  =  U. J
100 uniretop 22566 . . . . . . . . 9  |-  RR  =  U. ( topGen `  ran  (,) )
1015unieqi 4445 . . . . . . . . 9  |-  U. K  =  U. ( topGen `  ran  (,) )
102100, 101eqtr4i 2647 . . . . . . . 8  |-  RR  =  U. K
10399, 102cnf 21050 . . . . . . 7  |-  ( f  e.  ( J  Cn  K )  ->  f : U. J --> RR )
10498, 103syl6 35 . . . . . 6  |-  ( ph  ->  ( f  e.  A  ->  f : U. J --> RR ) )
105 feq2 6027 . . . . . . 7  |-  ( T  =  U. J  -> 
( f : T --> RR 
<->  f : U. J --> RR ) )
1067, 105mp1i 13 . . . . . 6  |-  ( ph  ->  ( f : T --> RR 
<->  f : U. J --> RR ) )
107104, 106sylibrd 249 . . . . 5  |-  ( ph  ->  ( f  e.  A  ->  f : T --> RR ) )
10895, 107ralrimi 2957 . . . 4  |-  ( ph  ->  A. f  e.  A  f : T --> RR )
109108adantr 481 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  A. f  e.  A  f : T
--> RR )
110 simprl 794 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  h  e.  A )
11152eqcomd 2628 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  - inf ( ran  F ,  RR ,  <  ) )  =  ( H `
 t ) )
112111oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( h `  t
)  -  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  )
) )  =  ( ( h `  t
)  -  ( H `
 t ) ) )
113112fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( abs `  ( ( h `
 t )  -  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  ) ) ) )  =  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) ) )
114113adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  (
( F `  t
)  - inf ( ran  F ,  RR ,  <  ) ) ) )  =  ( abs `  (
( h `  t
)  -  ( H `
 t ) ) ) )
115 simplrr 801 . . . . . . 7  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
116 rspa 2930 . . . . . . 7  |-  ( ( A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E  /\  t  e.  T )  ->  ( abs `  ( ( h `
 t )  -  ( H `  t ) ) )  <  E
)
117115, 116sylancom 701 . . . . . 6  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
)
118114, 117eqbrtrd 4675 . . . . 5  |-  ( ( ( ph  /\  (
h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t ) ) )  <  E ) )  /\  t  e.  T
)  ->  ( abs `  ( ( h `  t )  -  (
( F `  t
)  - inf ( ran  F ,  RR ,  <  ) ) ) )  < 
E )
119118ex 450 . . . 4  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  (
t  e.  T  -> 
( abs `  (
( h `  t
)  -  ( ( F `  t )  - inf ( ran  F ,  RR ,  <  )
) ) )  < 
E ) )
12089, 119ralrimi 2957 . . 3  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  A. t  e.  T  ( abs `  ( ( h `  t )  -  (
( F `  t
)  - inf ( ran  F ,  RR ,  <  ) ) ) )  < 
E )
12184, 85, 32, 89, 90, 91, 92, 93, 94, 109, 110, 120stoweidlem21 40238 . 2  |-  ( (
ph  /\  ( h  e.  A  /\  A. t  e.  T  ( abs `  ( ( h `  t )  -  ( H `  t )
) )  <  E
) )  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t )
) )  <  E
)
12283, 121rexlimddv 3035 1  |-  ( ph  ->  E. f  e.  A  A. t  e.  T  ( abs `  ( ( f `  t )  -  ( F `  t ) ) )  <  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650  infcinf 8347   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   2c2 11070   3c3 11071   RR+crp 11832   (,)cioo 12175   abscabs 13974   topGenctg 16098   Topctop 20698    Cn ccn 21028   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cn 21031  df-cnp 21032  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-xms 22125  df-ms 22126  df-tms 22127
This theorem is referenced by:  stoweid  40280
  Copyright terms: Public domain W3C validator