| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > stoweidlem41 | Structured version Visualization version Unicode version | ||
| Description: This lemma is used to
prove that there exists x as in Lemma 1 of
[BrosowskiDeutsh] p. 90: 0
<= x(t) <= 1 for all t in T, x(t) < epsilon
for all t in V, x(t) > 1 - epsilon for all t in T \ U. Here we prove
the
very last step of the proof of Lemma 1: "The result follows from
taking
x = 1 - qn". Here |
| Ref | Expression |
|---|---|
| stoweidlem41.1 |
|
| stoweidlem41.2 |
|
| stoweidlem41.3 |
|
| stoweidlem41.4 |
|
| stoweidlem41.5 |
|
| stoweidlem41.6 |
|
| stoweidlem41.7 |
|
| stoweidlem41.8 |
|
| stoweidlem41.9 |
|
| stoweidlem41.10 |
|
| stoweidlem41.11 |
|
| stoweidlem41.12 |
|
| stoweidlem41.13 |
|
| stoweidlem41.14 |
|
| Ref | Expression |
|---|---|
| stoweidlem41 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoweidlem41.1 |
. . . . 5
| |
| 2 | 1re 10039 |
. . . . . . . 8
| |
| 3 | stoweidlem41.3 |
. . . . . . . . 9
| |
| 4 | 3 | fvmpt2 6291 |
. . . . . . . 8
|
| 5 | 2, 4 | mpan2 707 |
. . . . . . 7
|
| 6 | 5 | adantl 482 |
. . . . . 6
|
| 7 | 6 | oveq1d 6665 |
. . . . 5
|
| 8 | 1, 7 | mpteq2da 4743 |
. . . 4
|
| 9 | stoweidlem41.2 |
. . . 4
| |
| 10 | 8, 9 | syl6eqr 2674 |
. . 3
|
| 11 | stoweidlem41.10 |
. . . . . . 7
| |
| 12 | 11 | stoweidlem4 40221 |
. . . . . 6
|
| 13 | 2, 12 | mpan2 707 |
. . . . 5
|
| 14 | 3, 13 | syl5eqel 2705 |
. . . 4
|
| 15 | stoweidlem41.5 |
. . . 4
| |
| 16 | nfmpt1 4747 |
. . . . . 6
| |
| 17 | 3, 16 | nfcxfr 2762 |
. . . . 5
|
| 18 | nfcv 2764 |
. . . . 5
| |
| 19 | stoweidlem41.7 |
. . . . 5
| |
| 20 | stoweidlem41.8 |
. . . . 5
| |
| 21 | stoweidlem41.9 |
. . . . 5
| |
| 22 | 17, 18, 1, 19, 20, 21, 11 | stoweidlem33 40250 |
. . . 4
|
| 23 | 14, 15, 22 | mpd3an23 1426 |
. . 3
|
| 24 | 10, 23 | eqeltrrd 2702 |
. 2
|
| 25 | stoweidlem41.6 |
. . . . . . . 8
| |
| 26 | 25 | ffvelrnda 6359 |
. . . . . . 7
|
| 27 | 1red 10055 |
. . . . . . 7
| |
| 28 | 0red 10041 |
. . . . . . 7
| |
| 29 | stoweidlem41.12 |
. . . . . . . . . 10
| |
| 30 | 29 | r19.21bi 2932 |
. . . . . . . . 9
|
| 31 | 30 | simprd 479 |
. . . . . . . 8
|
| 32 | 1m0e1 11131 |
. . . . . . . 8
| |
| 33 | 31, 32 | syl6breqr 4695 |
. . . . . . 7
|
| 34 | 26, 27, 28, 33 | lesubd 10631 |
. . . . . 6
|
| 35 | simpr 477 |
. . . . . . 7
| |
| 36 | 27, 26 | resubcld 10458 |
. . . . . . 7
|
| 37 | 9 | fvmpt2 6291 |
. . . . . . 7
|
| 38 | 35, 36, 37 | syl2anc 693 |
. . . . . 6
|
| 39 | 34, 38 | breqtrrd 4681 |
. . . . 5
|
| 40 | 30 | simpld 475 |
. . . . . . . 8
|
| 41 | 28, 26, 27, 40 | lesub2dd 10644 |
. . . . . . 7
|
| 42 | 41, 32 | syl6breq 4694 |
. . . . . 6
|
| 43 | 38, 42 | eqbrtrd 4675 |
. . . . 5
|
| 44 | 39, 43 | jca 554 |
. . . 4
|
| 45 | 44 | ex 450 |
. . 3
|
| 46 | 1, 45 | ralrimi 2957 |
. 2
|
| 47 | stoweidlem41.4 |
. . . . . . 7
| |
| 48 | 47 | sseli 3599 |
. . . . . 6
|
| 49 | 48, 38 | sylan2 491 |
. . . . 5
|
| 50 | 1red 10055 |
. . . . . 6
| |
| 51 | stoweidlem41.11 |
. . . . . . . 8
| |
| 52 | 51 | rpred 11872 |
. . . . . . 7
|
| 53 | 52 | adantr 481 |
. . . . . 6
|
| 54 | 48, 26 | sylan2 491 |
. . . . . 6
|
| 55 | stoweidlem41.13 |
. . . . . . 7
| |
| 56 | 55 | r19.21bi 2932 |
. . . . . 6
|
| 57 | 50, 53, 54, 56 | ltsub23d 10632 |
. . . . 5
|
| 58 | 49, 57 | eqbrtrd 4675 |
. . . 4
|
| 59 | 58 | ex 450 |
. . 3
|
| 60 | 1, 59 | ralrimi 2957 |
. 2
|
| 61 | eldifi 3732 |
. . . . . . 7
| |
| 62 | 61, 26 | sylan2 491 |
. . . . . 6
|
| 63 | 52 | adantr 481 |
. . . . . 6
|
| 64 | 1red 10055 |
. . . . . 6
| |
| 65 | stoweidlem41.14 |
. . . . . . 7
| |
| 66 | 65 | r19.21bi 2932 |
. . . . . 6
|
| 67 | 62, 63, 64, 66 | ltsub2dd 10640 |
. . . . 5
|
| 68 | 61, 38 | sylan2 491 |
. . . . 5
|
| 69 | 67, 68 | breqtrrd 4681 |
. . . 4
|
| 70 | 69 | ex 450 |
. . 3
|
| 71 | 1, 70 | ralrimi 2957 |
. 2
|
| 72 | nfmpt1 4747 |
. . . . . . 7
| |
| 73 | 9, 72 | nfcxfr 2762 |
. . . . . 6
|
| 74 | 73 | nfeq2 2780 |
. . . . 5
|
| 75 | fveq1 6190 |
. . . . . . 7
| |
| 76 | 75 | breq2d 4665 |
. . . . . 6
|
| 77 | 75 | breq1d 4663 |
. . . . . 6
|
| 78 | 76, 77 | anbi12d 747 |
. . . . 5
|
| 79 | 74, 78 | ralbid 2983 |
. . . 4
|
| 80 | 75 | breq1d 4663 |
. . . . 5
|
| 81 | 74, 80 | ralbid 2983 |
. . . 4
|
| 82 | 75 | breq2d 4665 |
. . . . 5
|
| 83 | 74, 82 | ralbid 2983 |
. . . 4
|
| 84 | 79, 81, 83 | 3anbi123d 1399 |
. . 3
|
| 85 | 84 | rspcev 3309 |
. 2
|
| 86 | 24, 46, 60, 71, 85 | syl13anc 1328 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-rp 11833 |
| This theorem is referenced by: stoweidlem52 40269 |
| Copyright terms: Public domain | W3C validator |