Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem40 Structured version   Visualization version   Unicode version

Theorem stoweidlem40 40257
Description: This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem40.1  |-  F/_ t P
stoweidlem40.2  |-  F/ t
ph
stoweidlem40.3  |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )
stoweidlem40.4  |-  F  =  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
stoweidlem40.5  |-  G  =  ( t  e.  T  |->  1 )
stoweidlem40.6  |-  H  =  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )
stoweidlem40.7  |-  ( ph  ->  P  e.  A )
stoweidlem40.8  |-  ( ph  ->  P : T --> RR )
stoweidlem40.9  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem40.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem40.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem40.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem40.13  |-  ( ph  ->  N  e.  NN )
stoweidlem40.14  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
stoweidlem40  |-  ( ph  ->  Q  e.  A )
Distinct variable groups:    f, g,
t, A    f, F, g    f, G, g    f, H, g    P, f, g    T, f, g, t    ph, f,
g    x, t, A    t, M    t, N    x, T    ph, x
Allowed substitution hints:    ph( t)    P( x, t)    Q( x, t, f, g)    F( x, t)    G( x, t)    H( x, t)    M( x, f, g)    N( x, f, g)

Proof of Theorem stoweidlem40
StepHypRef Expression
1 stoweidlem40.3 . . 3  |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )
2 stoweidlem40.2 . . . 4  |-  F/ t
ph
3 simpr 477 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
4 1red 10055 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  1  e.  RR )
5 stoweidlem40.8 . . . . . . . . . 10  |-  ( ph  ->  P : T --> RR )
65ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( P `  t )  e.  RR )
7 stoweidlem40.13 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
87nnnn0d 11351 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
98adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  N  e.  NN0 )
106, 9reexpcld 13025 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( P `  t
) ^ N )  e.  RR )
114, 10resubcld 10458 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  e.  RR )
12 stoweidlem40.4 . . . . . . . 8  |-  F  =  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
1312fvmpt2 6291 . . . . . . 7  |-  ( ( t  e.  T  /\  ( 1  -  (
( P `  t
) ^ N ) )  e.  RR )  ->  ( F `  t )  =  ( 1  -  ( ( P `  t ) ^ N ) ) )
143, 11, 13syl2anc 693 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  ( 1  -  ( ( P `  t ) ^ N
) ) )
1514eqcomd 2628 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  =  ( F `  t ) )
1615oveq1d 6665 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  (
( 1  -  (
( P `  t
) ^ N ) ) ^ M )  =  ( ( F `
 t ) ^ M ) )
172, 16mpteq2da 4743 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )  =  ( t  e.  T  |->  ( ( F `  t
) ^ M ) ) )
181, 17syl5eq 2668 . 2  |-  ( ph  ->  Q  =  ( t  e.  T  |->  ( ( F `  t ) ^ M ) ) )
19 nfmpt1 4747 . . . 4  |-  F/_ t
( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
2012, 19nfcxfr 2762 . . 3  |-  F/_ t F
21 stoweidlem40.9 . . 3  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
22 stoweidlem40.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
23 stoweidlem40.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
24 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
25 stoweidlem40.5 . . . . . . . . . . 11  |-  G  =  ( t  e.  T  |->  1 )
2625fvmpt2 6291 . . . . . . . . . 10  |-  ( ( t  e.  T  /\  1  e.  RR )  ->  ( G `  t
)  =  1 )
2724, 26mpan2 707 . . . . . . . . 9  |-  ( t  e.  T  ->  ( G `  t )  =  1 )
2827eqcomd 2628 . . . . . . . 8  |-  ( t  e.  T  ->  1  =  ( G `  t ) )
2928adantl 482 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  1  =  ( G `  t ) )
30 stoweidlem40.6 . . . . . . . . . 10  |-  H  =  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )
3130fvmpt2 6291 . . . . . . . . 9  |-  ( ( t  e.  T  /\  ( ( P `  t ) ^ N
)  e.  RR )  ->  ( H `  t )  =  ( ( P `  t
) ^ N ) )
323, 10, 31syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  ( ( P `
 t ) ^ N ) )
3332eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( P `  t
) ^ N )  =  ( H `  t ) )
3429, 33oveq12d 6668 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  =  ( ( G `
 t )  -  ( H `  t ) ) )
352, 34mpteq2da 4743 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )  =  ( t  e.  T  |->  ( ( G `  t
)  -  ( H `
 t ) ) ) )
3612, 35syl5eq 2668 . . . 4  |-  ( ph  ->  F  =  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t ) ) ) )
3723stoweidlem4 40221 . . . . . . 7  |-  ( (
ph  /\  1  e.  RR )  ->  ( t  e.  T  |->  1 )  e.  A )
3824, 37mpan2 707 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
3925, 38syl5eqel 2705 . . . . 5  |-  ( ph  ->  G  e.  A )
40 stoweidlem40.1 . . . . . . 7  |-  F/_ t P
41 stoweidlem40.7 . . . . . . 7  |-  ( ph  ->  P  e.  A )
4240, 2, 21, 22, 23, 41, 8stoweidlem19 40236 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )  e.  A
)
4330, 42syl5eqel 2705 . . . . 5  |-  ( ph  ->  H  e.  A )
44 nfmpt1 4747 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  1 )
4525, 44nfcxfr 2762 . . . . . 6  |-  F/_ t G
46 nfmpt1 4747 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  ( ( P `  t ) ^ N
) )
4730, 46nfcxfr 2762 . . . . . 6  |-  F/_ t H
48 stoweidlem40.10 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
4945, 47, 2, 21, 48, 22, 23stoweidlem33 40250 . . . . 5  |-  ( (
ph  /\  G  e.  A  /\  H  e.  A
)  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t ) ) )  e.  A )
5039, 43, 49mpd3an23 1426 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t )
) )  e.  A
)
5136, 50eqeltrd 2701 . . 3  |-  ( ph  ->  F  e.  A )
52 stoweidlem40.14 . . . 4  |-  ( ph  ->  M  e.  NN )
5352nnnn0d 11351 . . 3  |-  ( ph  ->  M  e.  NN0 )
5420, 2, 21, 22, 23, 51, 53stoweidlem19 40236 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ M
) )  e.  A
)
5518, 54eqeltrd 2701 1  |-  ( ph  ->  Q  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ^cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-exp 12861
This theorem is referenced by:  stoweidlem45  40262
  Copyright terms: Public domain W3C validator