Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem52 Structured version   Visualization version   Unicode version

Theorem stoweidlem52 40269
Description: There exists a neighborood V as in Lemma 1 of [BrosowskiDeutsh] p. 90. Here Z is used to represent t0 in the paper, and v is used to represent V in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem52.1  |-  F/_ t U
stoweidlem52.2  |-  F/ t
ph
stoweidlem52.3  |-  F/_ t P
stoweidlem52.4  |-  K  =  ( topGen `  ran  (,) )
stoweidlem52.5  |-  V  =  { t  e.  T  |  ( P `  t )  <  ( D  /  2 ) }
stoweidlem52.7  |-  T  = 
U. J
stoweidlem52.8  |-  C  =  ( J  Cn  K
)
stoweidlem52.9  |-  ( ph  ->  A  C_  C )
stoweidlem52.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem52.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem52.12  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
stoweidlem52.13  |-  ( ph  ->  D  e.  RR+ )
stoweidlem52.14  |-  ( ph  ->  D  <  1 )
stoweidlem52.15  |-  ( ph  ->  U  e.  J )
stoweidlem52.16  |-  ( ph  ->  Z  e.  U )
stoweidlem52.17  |-  ( ph  ->  P  e.  A )
stoweidlem52.18  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
stoweidlem52.19  |-  ( ph  ->  ( P `  Z
)  =  0 )
stoweidlem52.20  |-  ( ph  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
Assertion
Ref Expression
stoweidlem52  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Distinct variable groups:    e, a,
t    A, a, t    D, a, t    T, a, t    U, a    V, a, e    ph, a, e    e, f, g, t    v, e, x, t    A, f, g    D, f, g    P, f, g    T, f, g    U, f, g    f, V, g    ph, f, g    t, Z, v    v, A    v, J    v, T, x    v, U, x    v, V, x   
x, A
Allowed substitution hints:    ph( x, v, t)    A( e)    C( x, v, t, e, f, g, a)    D( x, v, e)    P( x, v, t, e, a)    T( e)    U( t, e)    J( x, t, e, f, g, a)    K( x, v, t, e, f, g, a)    V( t)    Z( x, e, f, g, a)

Proof of Theorem stoweidlem52
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . 3  |-  F/_ t
( D  /  2
)
2 stoweidlem52.3 . . 3  |-  F/_ t P
3 stoweidlem52.2 . . 3  |-  F/ t
ph
4 stoweidlem52.4 . . 3  |-  K  =  ( topGen `  ran  (,) )
5 stoweidlem52.7 . . 3  |-  T  = 
U. J
6 stoweidlem52.5 . . 3  |-  V  =  { t  e.  T  |  ( P `  t )  <  ( D  /  2 ) }
7 stoweidlem52.13 . . . . . 6  |-  ( ph  ->  D  e.  RR+ )
87rpred 11872 . . . . 5  |-  ( ph  ->  D  e.  RR )
98rehalfcld 11279 . . . 4  |-  ( ph  ->  ( D  /  2
)  e.  RR )
109rexrd 10089 . . 3  |-  ( ph  ->  ( D  /  2
)  e.  RR* )
11 stoweidlem52.9 . . . . 5  |-  ( ph  ->  A  C_  C )
12 stoweidlem52.8 . . . . 5  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3651 . . . 4  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem52.17 . . . 4  |-  ( ph  ->  P  e.  A )
1513, 14sseldd 3604 . . 3  |-  ( ph  ->  P  e.  ( J  Cn  K ) )
161, 2, 3, 4, 5, 6, 10, 15rfcnpre2 39190 . 2  |-  ( ph  ->  V  e.  J )
17 stoweidlem52.15 . . . . . . . 8  |-  ( ph  ->  U  e.  J )
18 elssuni 4467 . . . . . . . 8  |-  ( U  e.  J  ->  U  C_ 
U. J )
1917, 18syl 17 . . . . . . 7  |-  ( ph  ->  U  C_  U. J )
2019, 5syl6sseqr 3652 . . . . . 6  |-  ( ph  ->  U  C_  T )
21 stoweidlem52.16 . . . . . 6  |-  ( ph  ->  Z  e.  U )
2220, 21sseldd 3604 . . . . 5  |-  ( ph  ->  Z  e.  T )
23 stoweidlem52.19 . . . . . 6  |-  ( ph  ->  ( P `  Z
)  =  0 )
24 2re 11090 . . . . . . . 8  |-  2  e.  RR
2524a1i 11 . . . . . . 7  |-  ( ph  ->  2  e.  RR )
267rpgt0d 11875 . . . . . . 7  |-  ( ph  ->  0  <  D )
27 2pos 11112 . . . . . . . 8  |-  0  <  2
2827a1i 11 . . . . . . 7  |-  ( ph  ->  0  <  2 )
298, 25, 26, 28divgt0d 10959 . . . . . 6  |-  ( ph  ->  0  <  ( D  /  2 ) )
3023, 29eqbrtrd 4675 . . . . 5  |-  ( ph  ->  ( P `  Z
)  <  ( D  /  2 ) )
31 nfcv 2764 . . . . . 6  |-  F/_ t Z
32 nfcv 2764 . . . . . 6  |-  F/_ t T
332, 31nffv 6198 . . . . . . 7  |-  F/_ t
( P `  Z
)
34 nfcv 2764 . . . . . . 7  |-  F/_ t  <
3533, 34, 1nfbr 4699 . . . . . 6  |-  F/ t ( P `  Z
)  <  ( D  /  2 )
36 fveq2 6191 . . . . . . 7  |-  ( t  =  Z  ->  ( P `  t )  =  ( P `  Z ) )
3736breq1d 4663 . . . . . 6  |-  ( t  =  Z  ->  (
( P `  t
)  <  ( D  /  2 )  <->  ( P `  Z )  <  ( D  /  2 ) ) )
3831, 32, 35, 37elrabf 3360 . . . . 5  |-  ( Z  e.  { t  e.  T  |  ( P `
 t )  < 
( D  /  2
) }  <->  ( Z  e.  T  /\  ( P `  Z )  <  ( D  /  2
) ) )
3922, 30, 38sylanbrc 698 . . . 4  |-  ( ph  ->  Z  e.  { t  e.  T  |  ( P `  t )  <  ( D  / 
2 ) } )
4039, 6syl6eleqr 2712 . . 3  |-  ( ph  ->  Z  e.  V )
41 nfrab1 3122 . . . . 5  |-  F/_ t { t  e.  T  |  ( P `  t )  <  ( D  /  2 ) }
426, 41nfcxfr 2762 . . . 4  |-  F/_ t V
43 stoweidlem52.1 . . . 4  |-  F/_ t U
4411, 14sseldd 3604 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  C )
454, 5, 12, 44fcnre 39184 . . . . . . . . . 10  |-  ( ph  ->  P : T --> RR )
4645adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  V )  ->  P : T --> RR )
476rabeq2i 3197 . . . . . . . . . . . 12  |-  ( t  e.  V  <->  ( t  e.  T  /\  ( P `  t )  <  ( D  /  2
) ) )
4847biimpi 206 . . . . . . . . . . 11  |-  ( t  e.  V  ->  (
t  e.  T  /\  ( P `  t )  <  ( D  / 
2 ) ) )
4948adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  V )  ->  (
t  e.  T  /\  ( P `  t )  <  ( D  / 
2 ) ) )
5049simpld 475 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  V )  ->  t  e.  T )
5146, 50ffvelrnd 6360 . . . . . . . 8  |-  ( (
ph  /\  t  e.  V )  ->  ( P `  t )  e.  RR )
529adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  V )  ->  ( D  /  2 )  e.  RR )
538adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  V )  ->  D  e.  RR )
5449simprd 479 . . . . . . . 8  |-  ( (
ph  /\  t  e.  V )  ->  ( P `  t )  <  ( D  /  2
) )
55 halfpos 11262 . . . . . . . . . . 11  |-  ( D  e.  RR  ->  (
0  <  D  <->  ( D  /  2 )  < 
D ) )
568, 55syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( 0  <  D  <->  ( D  /  2 )  <  D ) )
5726, 56mpbid 222 . . . . . . . . 9  |-  ( ph  ->  ( D  /  2
)  <  D )
5857adantr 481 . . . . . . . 8  |-  ( (
ph  /\  t  e.  V )  ->  ( D  /  2 )  < 
D )
5951, 52, 53, 54, 58lttrd 10198 . . . . . . 7  |-  ( (
ph  /\  t  e.  V )  ->  ( P `  t )  <  D )
6059adantr 481 . . . . . 6  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  ( P `  t
)  <  D )
618ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  D  e.  RR )
6251adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  ( P `  t
)  e.  RR )
63 stoweidlem52.20 . . . . . . . . 9  |-  ( ph  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
6463ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  A. t  e.  ( T  \  U ) D  <_  ( P `  t ) )
6550anim1i 592 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  ( t  e.  T  /\  -.  t  e.  U
) )
66 eldif 3584 . . . . . . . . 9  |-  ( t  e.  ( T  \  U )  <->  ( t  e.  T  /\  -.  t  e.  U ) )
6765, 66sylibr 224 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  t  e.  ( T 
\  U ) )
68 rsp 2929 . . . . . . . 8  |-  ( A. t  e.  ( T  \  U ) D  <_ 
( P `  t
)  ->  ( t  e.  ( T  \  U
)  ->  D  <_  ( P `  t ) ) )
6964, 67, 68sylc 65 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  D  <_  ( P `  t ) )
7061, 62, 69lensymd 10188 . . . . . 6  |-  ( ( ( ph  /\  t  e.  V )  /\  -.  t  e.  U )  ->  -.  ( P `  t )  <  D
)
7160, 70condan 835 . . . . 5  |-  ( (
ph  /\  t  e.  V )  ->  t  e.  U )
7271ex 450 . . . 4  |-  ( ph  ->  ( t  e.  V  ->  t  e.  U ) )
733, 42, 43, 72ssrd 3608 . . 3  |-  ( ph  ->  V  C_  U )
74 nfv 1843 . . . . . . . . 9  |-  F/ t  e  e.  RR+
753, 74nfan 1828 . . . . . . . 8  |-  F/ t ( ph  /\  e  e.  RR+ )
76 nfv 1843 . . . . . . . 8  |-  F/ t  y  e.  A
7775, 76nfan 1828 . . . . . . 7  |-  F/ t ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )
78 nfra1 2941 . . . . . . . 8  |-  F/ t A. t  e.  T  ( 0  <_  (
y `  t )  /\  ( y `  t
)  <_  1 )
79 nfra1 2941 . . . . . . . 8  |-  F/ t A. t  e.  V  ( 1  -  e
)  <  ( y `  t )
80 nfra1 2941 . . . . . . . 8  |-  F/ t A. t  e.  ( T  \  U ) ( y `  t
)  <  e
8178, 79, 80nf3an 1831 . . . . . . 7  |-  F/ t ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
)
8277, 81nfan 1828 . . . . . 6  |-  F/ t ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A
)  /\  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )
83 eqid 2622 . . . . . 6  |-  ( t  e.  T  |->  ( 1  -  ( y `  t ) ) )  =  ( t  e.  T  |->  ( 1  -  ( y `  t
) ) )
84 eqid 2622 . . . . . 6  |-  ( t  e.  T  |->  1 )  =  ( t  e.  T  |->  1 )
85 ssrab2 3687 . . . . . . 7  |-  { t  e.  T  |  ( P `  t )  <  ( D  / 
2 ) }  C_  T
866, 85eqsstri 3635 . . . . . 6  |-  V  C_  T
87 simplr 792 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  y  e.  A )
88 simplll 798 . . . . . . 7  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  ph )
8911sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  C )
904, 5, 12, 89fcnre 39184 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  y : T --> RR )
9188, 87, 90syl2anc 693 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  y : T --> RR )
9211sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A )  ->  f  e.  C )
934, 5, 12, 92fcnre 39184 . . . . . . 7  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
9488, 93sylan 488 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A
)  /\  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )  /\  f  e.  A )  ->  f : T --> RR )
95 stoweidlem52.10 . . . . . . 7  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
9688, 95syl3an1 1359 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A
)  /\  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)
97 stoweidlem52.11 . . . . . . 7  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
9888, 97syl3an1 1359 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A
)  /\  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)
99 stoweidlem52.12 . . . . . . 7  |-  ( (
ph  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A )
10088, 99sylan 488 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A
)  /\  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )  /\  a  e.  RR )  ->  ( t  e.  T  |->  a )  e.  A
)
101 simpllr 799 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  e  e.  RR+ )
102 simpr1 1067 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  A. t  e.  T  ( 0  <_  ( y `  t )  /\  (
y `  t )  <_  1 ) )
103 simpr2 1068 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  A. t  e.  V  ( 1  -  e )  < 
( y `  t
) )
104 simpr3 1069 . . . . . 6  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  A. t  e.  ( T  \  U
) ( y `  t )  <  e
)
10582, 83, 84, 86, 87, 91, 94, 96, 98, 100, 101, 102, 103, 104stoweidlem41 40258 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  y  e.  A )  /\  ( A. t  e.  T  ( 0  <_ 
( y `  t
)  /\  ( y `  t )  <_  1
)  /\  A. t  e.  V  ( 1  -  e )  < 
( y `  t
)  /\  A. t  e.  ( T  \  U
) ( y `  t )  <  e
) )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) )
1067adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  D  e.  RR+ )
107 stoweidlem52.14 . . . . . . 7  |-  ( ph  ->  D  <  1 )
108107adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  D  <  1 )
10914adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  P  e.  A )
11045adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  P : T
--> RR )
111 stoweidlem52.18 . . . . . . 7  |-  ( ph  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t
)  <_  1 ) )
112111adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. t  e.  T  ( 0  <_  ( P `  t )  /\  ( P `  t )  <_  1 ) )
11363adantr 481 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. t  e.  ( T  \  U
) D  <_  ( P `  t )
)
11493adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  f  e.  A )  ->  f : T --> RR )
115953adant1r 1319 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
116973adant1r 1319 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
11799adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  a  e.  RR )  ->  (
t  e.  T  |->  a )  e.  A )
118 simpr 477 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
1192, 75, 6, 106, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118stoweidlem49 40266 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. y  e.  A  ( A. t  e.  T  (
0  <_  ( y `  t )  /\  (
y `  t )  <_  1 )  /\  A. t  e.  V  (
1  -  e )  <  ( y `  t )  /\  A. t  e.  ( T  \  U ) ( y `
 t )  < 
e ) )
120105, 119r19.29a 3078 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) )
121120ralrimiva 2966 . . 3  |-  ( ph  ->  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  V  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( x `  t ) ) )
12240, 73, 121jca31 557 . 2  |-  ( ph  ->  ( ( Z  e.  V  /\  V  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
123 eleq2 2690 . . . . 5  |-  ( v  =  V  ->  ( Z  e.  v  <->  Z  e.  V ) )
124 sseq1 3626 . . . . 5  |-  ( v  =  V  ->  (
v  C_  U  <->  V  C_  U
) )
125123, 124anbi12d 747 . . . 4  |-  ( v  =  V  ->  (
( Z  e.  v  /\  v  C_  U
)  <->  ( Z  e.  V  /\  V  C_  U ) ) )
126 nfcv 2764 . . . . . . . 8  |-  F/_ t
v
127126, 42raleqf 3134 . . . . . . 7  |-  ( v  =  V  ->  ( A. t  e.  v 
( x `  t
)  <  e  <->  A. t  e.  V  ( x `  t )  <  e
) )
1281273anbi2d 1404 . . . . . 6  |-  ( v  =  V  ->  (
( A. t  e.  T  ( 0  <_ 
( x `  t
)  /\  ( x `  t )  <_  1
)  /\  A. t  e.  v  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( x `  t ) )  <->  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
129128rexbidv 3052 . . . . 5  |-  ( v  =  V  ->  ( E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  v  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( x `  t ) )  <->  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
130129ralbidv 2986 . . . 4  |-  ( v  =  V  ->  ( A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
)  <->  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  ( 0  <_  (
x `  t )  /\  ( x `  t
)  <_  1 )  /\  A. t  e.  V  ( x `  t )  <  e  /\  A. t  e.  ( T  \  U ) ( 1  -  e
)  <  ( x `  t ) ) ) )
131125, 130anbi12d 747 . . 3  |-  ( v  =  V  ->  (
( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) )  <->  ( ( Z  e.  V  /\  V  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) ) )
132131rspcev 3309 . 2  |-  ( ( V  e.  J  /\  ( ( Z  e.  V  /\  V  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  V  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
13316, 122, 132syl2anc 693 1  |-  ( ph  ->  E. v  e.  J  ( ( Z  e.  v  /\  v  C_  U )  /\  A. e  e.  RR+  E. x  e.  A  ( A. t  e.  T  (
0  <_  ( x `  t )  /\  (
x `  t )  <_  1 )  /\  A. t  e.  v  (
x `  t )  <  e  /\  A. t  e.  ( T  \  U
) ( 1  -  e )  <  (
x `  t )
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    C_ wss 3574   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729   ran crn 5115   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   topGenctg 16098    Cn ccn 21028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031
This theorem is referenced by:  stoweidlem56  40273
  Copyright terms: Public domain W3C validator