MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supmullem2 Structured version   Visualization version   Unicode version

Theorem supmullem2 10994
Description: Lemma for supmul 10995. (Contributed by Mario Carneiro, 5-Jul-2013.)
Hypotheses
Ref Expression
supmul.1  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
supmul.2  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
Assertion
Ref Expression
supmullem2  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
Distinct variable groups:    A, b,
v, x, y, w, z    B, b, v, x, y, w, z    x, C, w    ph, b, w, z
Allowed substitution hints:    ph( x, y, v)    C( y, z, v, b)

Proof of Theorem supmullem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . 5  |-  w  e. 
_V
2 oveq1 6657 . . . . . . . . 9  |-  ( v  =  a  ->  (
v  x.  b )  =  ( a  x.  b ) )
32eqeq2d 2632 . . . . . . . 8  |-  ( v  =  a  ->  (
z  =  ( v  x.  b )  <->  z  =  ( a  x.  b
) ) )
43rexbidv 3052 . . . . . . 7  |-  ( v  =  a  ->  ( E. b  e.  B  z  =  ( v  x.  b )  <->  E. b  e.  B  z  =  ( a  x.  b
) ) )
54cbvrexv 3172 . . . . . 6  |-  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b
) )
6 eqeq1 2626 . . . . . . 7  |-  ( z  =  w  ->  (
z  =  ( a  x.  b )  <->  w  =  ( a  x.  b
) ) )
762rexbidv 3057 . . . . . 6  |-  ( z  =  w  ->  ( E. a  e.  A  E. b  e.  B  z  =  ( a  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
85, 7syl5bb 272 . . . . 5  |-  ( z  =  w  ->  ( E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b )  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) ) )
9 supmul.1 . . . . 5  |-  C  =  { z  |  E. v  e.  A  E. b  e.  B  z  =  ( v  x.  b ) }
101, 8, 9elab2 3354 . . . 4  |-  ( w  e.  C  <->  E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) )
11 supmul.2 . . . . . . . . . . 11  |-  ( ph  <->  ( ( A. x  e.  A  0  <_  x  /\  A. x  e.  B 
0  <_  x )  /\  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( B 
C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
) ) )
1211simp2bi 1077 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
1312simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  A  C_  RR )
1413sseld 3602 . . . . . . . 8  |-  ( ph  ->  ( a  e.  A  ->  a  e.  RR ) )
1511simp3bi 1078 . . . . . . . . . 10  |-  ( ph  ->  ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x ) )
1615simp1d 1073 . . . . . . . . 9  |-  ( ph  ->  B  C_  RR )
1716sseld 3602 . . . . . . . 8  |-  ( ph  ->  ( b  e.  B  ->  b  e.  RR ) )
1814, 17anim12d 586 . . . . . . 7  |-  ( ph  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  e.  RR  /\  b  e.  RR )
) )
19 remulcl 10021 . . . . . . 7  |-  ( ( a  e.  RR  /\  b  e.  RR )  ->  ( a  x.  b
)  e.  RR )
2018, 19syl6 35 . . . . . 6  |-  ( ph  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
a  x.  b )  e.  RR ) )
21 eleq1a 2696 . . . . . 6  |-  ( ( a  x.  b )  e.  RR  ->  (
w  =  ( a  x.  b )  ->  w  e.  RR )
)
2220, 21syl6 35 . . . . 5  |-  ( ph  ->  ( ( a  e.  A  /\  b  e.  B )  ->  (
w  =  ( a  x.  b )  ->  w  e.  RR )
) )
2322rexlimdvv 3037 . . . 4  |-  ( ph  ->  ( E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b )  ->  w  e.  RR ) )
2410, 23syl5bi 232 . . 3  |-  ( ph  ->  ( w  e.  C  ->  w  e.  RR ) )
2524ssrdv 3609 . 2  |-  ( ph  ->  C  C_  RR )
2612simp2d 1074 . . . . 5  |-  ( ph  ->  A  =/=  (/) )
2715simp2d 1074 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
28 ovex 6678 . . . . . . . . . 10  |-  ( a  x.  b )  e. 
_V
2928isseti 3209 . . . . . . . . 9  |-  E. w  w  =  ( a  x.  b )
3029rgenw 2924 . . . . . . . 8  |-  A. b  e.  B  E. w  w  =  ( a  x.  b )
31 r19.2z 4060 . . . . . . . 8  |-  ( ( B  =/=  (/)  /\  A. b  e.  B  E. w  w  =  (
a  x.  b ) )  ->  E. b  e.  B  E. w  w  =  ( a  x.  b ) )
3227, 30, 31sylancl 694 . . . . . . 7  |-  ( ph  ->  E. b  e.  B  E. w  w  =  ( a  x.  b
) )
33 rexcom4 3225 . . . . . . 7  |-  ( E. b  e.  B  E. w  w  =  (
a  x.  b )  <->  E. w E. b  e.  B  w  =  ( a  x.  b ) )
3432, 33sylib 208 . . . . . 6  |-  ( ph  ->  E. w E. b  e.  B  w  =  ( a  x.  b
) )
3534ralrimivw 2967 . . . . 5  |-  ( ph  ->  A. a  e.  A  E. w E. b  e.  B  w  =  ( a  x.  b ) )
36 r19.2z 4060 . . . . 5  |-  ( ( A  =/=  (/)  /\  A. a  e.  A  E. w E. b  e.  B  w  =  ( a  x.  b ) )  ->  E. a  e.  A  E. w E. b  e.  B  w  =  ( a  x.  b ) )
3726, 35, 36syl2anc 693 . . . 4  |-  ( ph  ->  E. a  e.  A  E. w E. b  e.  B  w  =  ( a  x.  b ) )
38 rexcom4 3225 . . . 4  |-  ( E. a  e.  A  E. w E. b  e.  B  w  =  ( a  x.  b )  <->  E. w E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b ) )
3937, 38sylib 208 . . 3  |-  ( ph  ->  E. w E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) )
40 n0 3931 . . . 4  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
4110exbii 1774 . . . 4  |-  ( E. w  w  e.  C  <->  E. w E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b ) )
4240, 41bitri 264 . . 3  |-  ( C  =/=  (/)  <->  E. w E. a  e.  A  E. b  e.  B  w  =  ( a  x.  b
) )
4339, 42sylibr 224 . 2  |-  ( ph  ->  C  =/=  (/) )
44 suprcl 10983 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
4512, 44syl 17 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
46 suprcl 10983 . . . . 5  |-  ( ( B  C_  RR  /\  B  =/=  (/)  /\  E. x  e.  RR  A. y  e.  B  y  <_  x
)  ->  sup ( B ,  RR ,  <  )  e.  RR )
4715, 46syl 17 . . . 4  |-  ( ph  ->  sup ( B ,  RR ,  <  )  e.  RR )
4845, 47remulcld 10070 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  e.  RR )
499, 11supmullem1 10993 . . 3  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )
50 breq2 4657 . . . . 5  |-  ( x  =  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  ->  (
w  <_  x  <->  w  <_  ( sup ( A ,  RR ,  <  )  x. 
sup ( B ,  RR ,  <  ) ) ) )
5150ralbidv 2986 . . . 4  |-  ( x  =  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  ->  ( A. w  e.  C  w  <_  x  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x. 
sup ( B ,  RR ,  <  ) ) ) )
5251rspcev 3309 . . 3  |-  ( ( ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) )  e.  RR  /\  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  x.  sup ( B ,  RR ,  <  ) ) )  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
5348, 49, 52syl2anc 693 . 2  |-  ( ph  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
5425, 43, 533jca 1242 1  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   supcsup 8346   RRcr 9935   0cc0 9936    x. cmul 9941    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  supmul  10995  sqrlem5  13987
  Copyright terms: Public domain W3C validator