MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprub Structured version   Visualization version   Unicode version

Theorem suprub 10984
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
suprub  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem suprub
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ltso 10118 . . . . 5  |-  <  Or  RR
21a1i 11 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  <  Or  RR )
3 sup3 10980 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
42, 3supub 8365 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
54imp 445 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  -.  sup ( A ,  RR ,  <  )  <  B
)
6 simp1 1061 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  A  C_  RR )
76sselda 3603 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  e.  RR )
8 suprcl 10983 . . . 4  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
98adantr 481 . . 3  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
107, 9lenltd 10183 . 2  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  ( B  <_  sup ( A ,  RR ,  <  )  <->  -.  sup ( A ,  RR ,  <  )  <  B ) )
115, 10mpbird 247 1  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  B  e.  A )  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   supcsup 8346   RRcr 9935    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  suprubd  10985  supaddc  10990  supadd  10991  supmul1  10992  supmullem1  10993  supmul  10995  suprubii  10998  suprzcl  11457  rpnnen1lem5  11818  rpnnen1lem5OLD  11824  supicc  12320  supiccub  12321  flval3  12616  sqrlem4  13986  sqrlem7  13989  isercolllem2  14396  climsup  14400  fsumcvg3  14460  supcvg  14588  mertenslem1  14616  mertenslem2  14617  ruclem12  14970  pgpssslw  18029  icccmplem2  22626  icccmplem3  22627  reconnlem2  22630  evth  22758  ivthlem2  23221  ivthlem3  23222  mbflimsup  23433  itg2mono  23520  itg2cnlem1  23528  c1liplem1  23759  plyeq0lem  23966  esumpcvgval  30140  erdszelem8  31180  itg2addnclem2  33462  ftc1anclem7  33491  ftc1anc  33493  totbndbnd  33588  prdsbnd  33592  ubelsupr  39179  suprnmpt  39355  upbdrech  39519  ssfiunibd  39523  uzfissfz  39542  fourierdlem20  40344  fourierdlem31  40355  fourierdlem64  40387  fourierdlem79  40402  sge0isum  40644  hoicvr  40762  hoidmv1lelem1  40805  hoidmv1lelem3  40807  hoidmvlelem1  40809  hoidmvlelem4  40812
  Copyright terms: Public domain W3C validator