MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrub Structured version   Visualization version   Unicode version

Theorem dgrub 23990
Description: If the  M-th coefficient of  F is nonzero, then the degree of  F is at least  M. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1  |-  A  =  (coeff `  F )
dgrub.2  |-  N  =  (deg `  F )
Assertion
Ref Expression
dgrub  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  <_  N )

Proof of Theorem dgrub
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  F  e.  (Poly `  S )
)
2 simp2 1062 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  NN0 )
3 dgrub.1 . . . . . . . . 9  |-  A  =  (coeff `  F )
43coef3 23988 . . . . . . . 8  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> CC )
51, 4syl 17 . . . . . . 7  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  A : NN0 --> CC )
65, 2ffvelrnd 6360 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  e.  CC )
7 simp3 1063 . . . . . 6  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  =/=  0 )
8 eldifsn 4317 . . . . . 6  |-  ( ( A `  M )  e.  ( CC  \  { 0 } )  <-> 
( ( A `  M )  e.  CC  /\  ( A `  M
)  =/=  0 ) )
96, 7, 8sylanbrc 698 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( A `  M )  e.  ( CC  \  {
0 } ) )
103coef 23986 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  A : NN0
--> ( S  u.  {
0 } ) )
11 ffn 6045 . . . . . 6  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  A  Fn  NN0 )
12 elpreima 6337 . . . . . 6  |-  ( A  Fn  NN0  ->  ( M  e.  ( `' A " ( CC  \  {
0 } ) )  <-> 
( M  e.  NN0  /\  ( A `  M
)  e.  ( CC 
\  { 0 } ) ) ) )
131, 10, 11, 124syl 19 . . . . 5  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( M  e.  ( `' A " ( CC  \  { 0 } ) )  <->  ( M  e. 
NN0  /\  ( A `  M )  e.  ( CC  \  { 0 } ) ) ) )
142, 9, 13mpbir2and 957 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  ( `' A "
( CC  \  {
0 } ) ) )
15 nn0ssre 11296 . . . . . . 7  |-  NN0  C_  RR
16 ltso 10118 . . . . . . 7  |-  <  Or  RR
17 soss 5053 . . . . . . 7  |-  ( NN0  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN0 ) )
1815, 16, 17mp2 9 . . . . . 6  |-  <  Or  NN0
1918a1i 11 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  <  Or  NN0 )
20 0zd 11389 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  0  e.  ZZ )
21 cnvimass 5485 . . . . . . 7  |-  ( `' A " ( CC 
\  { 0 } ) )  C_  dom  A
22 fdm 6051 . . . . . . . 8  |-  ( A : NN0 --> ( S  u.  { 0 } )  ->  dom  A  = 
NN0 )
2310, 22syl 17 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  dom  A  = 
NN0 )
2421, 23syl5sseq 3653 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  ( `' A " ( CC  \  { 0 } ) )  C_  NN0 )
253dgrlem 23985 . . . . . . 7  |-  ( F  e.  (Poly `  S
)  ->  ( A : NN0 --> ( S  u.  { 0 } )  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
) )
2625simprd 479 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  ZZ  A. x  e.  ( `' A "
( CC  \  {
0 } ) ) x  <_  n )
27 nn0uz 11722 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2827uzsupss 11780 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  ( `' A " ( CC 
\  { 0 } ) )  C_  NN0  /\  E. n  e.  ZZ  A. x  e.  ( `' A " ( CC  \  { 0 } ) ) x  <_  n
)  ->  E. n  e.  NN0  ( A. x  e.  ( `' A "
( CC  \  {
0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  <  n  ->  E. y  e.  ( `' A " ( CC 
\  { 0 } ) ) x  < 
y ) ) )
2920, 24, 26, 28syl3anc 1326 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  E. n  e.  NN0  ( A. x  e.  ( `' A "
( CC  \  {
0 } ) )  -.  n  <  x  /\  A. x  e.  NN0  ( x  <  n  ->  E. y  e.  ( `' A " ( CC 
\  { 0 } ) ) x  < 
y ) ) )
3019, 29supub 8365 . . . 4  |-  ( F  e.  (Poly `  S
)  ->  ( M  e.  ( `' A "
( CC  \  {
0 } ) )  ->  -.  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M ) )
311, 14, 30sylc 65 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  -.  sup ( ( `' A " ( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M )
32 dgrub.2 . . . . . 6  |-  N  =  (deg `  F )
333dgrval 23984 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  =  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
3432, 33syl5eq 2668 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  N  =  sup ( ( `' A " ( CC  \  {
0 } ) ) ,  NN0 ,  <  ) )
351, 34syl 17 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  =  sup ( ( `' A " ( CC 
\  { 0 } ) ) ,  NN0 ,  <  ) )
3635breq1d 4663 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( N  <  M  <->  sup (
( `' A "
( CC  \  {
0 } ) ) ,  NN0 ,  <  )  <  M ) )
3731, 36mtbird 315 . 2  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  -.  N  <  M )
382nn0red 11352 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  e.  RR )
39 dgrcl 23989 . . . . . 6  |-  ( F  e.  (Poly `  S
)  ->  (deg `  F
)  e.  NN0 )
4032, 39syl5eqel 2705 . . . . 5  |-  ( F  e.  (Poly `  S
)  ->  N  e.  NN0 )
411, 40syl 17 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  e.  NN0 )
4241nn0red 11352 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  N  e.  RR )
4338, 42lenltd 10183 . 2  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  ( M  <_  N  <->  -.  N  <  M ) )
4437, 43mpbird 247 1  |-  ( ( F  e.  (Poly `  S )  /\  M  e.  NN0  /\  ( A `
 M )  =/=  0 )  ->  M  <_  N )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    u. cun 3572    C_ wss 3574   {csn 4177   class class class wbr 4653    Or wor 5034   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936    < clt 10074    <_ cle 10075   NN0cn0 11292   ZZcz 11377  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  dgrub2  23991  coeidlem  23993  coeid3  23996  dgreq  24000  coemullem  24006  coemulhi  24010  coemulc  24011  dgreq0  24021  dgrlt  24022  dgradd2  24024  dgrmul  24026  vieta1lem2  24066  aannenlem2  24084
  Copyright terms: Public domain W3C validator