MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcel Structured version   Visualization version   Unicode version

Theorem tcel 8621
Description: The transitive closure function converts the element relation to the subset relation. (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1  |-  A  e. 
_V
Assertion
Ref Expression
tcel  |-  ( B  e.  A  ->  ( TC `  B )  C_  ( TC `  A ) )

Proof of Theorem tcel
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tcvalg 8614 . 2  |-  ( B  e.  A  ->  ( TC `  B )  = 
|^| { x  |  ( B  C_  x  /\  Tr  x ) } )
2 ssel 3597 . . . . . . . 8  |-  ( A 
C_  x  ->  ( B  e.  A  ->  B  e.  x ) )
3 trss 4761 . . . . . . . . 9  |-  ( Tr  x  ->  ( B  e.  x  ->  B  C_  x ) )
43com12 32 . . . . . . . 8  |-  ( B  e.  x  ->  ( Tr  x  ->  B  C_  x ) )
52, 4syl6com 37 . . . . . . 7  |-  ( B  e.  A  ->  ( A  C_  x  ->  ( Tr  x  ->  B  C_  x ) ) )
65impd 447 . . . . . 6  |-  ( B  e.  A  ->  (
( A  C_  x  /\  Tr  x )  ->  B  C_  x ) )
7 simpr 477 . . . . . . 7  |-  ( ( A  C_  x  /\  Tr  x )  ->  Tr  x )
87a1i 11 . . . . . 6  |-  ( B  e.  A  ->  (
( A  C_  x  /\  Tr  x )  ->  Tr  x ) )
96, 8jcad 555 . . . . 5  |-  ( B  e.  A  ->  (
( A  C_  x  /\  Tr  x )  -> 
( B  C_  x  /\  Tr  x ) ) )
109ss2abdv 3675 . . . 4  |-  ( B  e.  A  ->  { x  |  ( A  C_  x  /\  Tr  x ) }  C_  { x  |  ( B  C_  x  /\  Tr  x ) } )
11 intss 4498 . . . 4  |-  ( { x  |  ( A 
C_  x  /\  Tr  x ) }  C_  { x  |  ( B 
C_  x  /\  Tr  x ) }  ->  |^|
{ x  |  ( B  C_  x  /\  Tr  x ) }  C_  |^|
{ x  |  ( A  C_  x  /\  Tr  x ) } )
1210, 11syl 17 . . 3  |-  ( B  e.  A  ->  |^| { x  |  ( B  C_  x  /\  Tr  x ) }  C_  |^| { x  |  ( A  C_  x  /\  Tr  x ) } )
13 tc2.1 . . . 4  |-  A  e. 
_V
14 tcvalg 8614 . . . 4  |-  ( A  e.  _V  ->  ( TC `  A )  = 
|^| { x  |  ( A  C_  x  /\  Tr  x ) } )
1513, 14ax-mp 5 . . 3  |-  ( TC
`  A )  = 
|^| { x  |  ( A  C_  x  /\  Tr  x ) }
1612, 15syl6sseqr 3652 . 2  |-  ( B  e.  A  ->  |^| { x  |  ( B  C_  x  /\  Tr  x ) }  C_  ( TC `  A ) )
171, 16eqsstrd 3639 1  |-  ( B  e.  A  ->  ( TC `  B )  C_  ( TC `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   |^|cint 4475   Tr wtr 4752   ` cfv 5888   TCctc 8612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-tc 8613
This theorem is referenced by:  tcrank  8747  hsmexlem4  9251
  Copyright terms: Public domain W3C validator