MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unblem2 Structured version   Visualization version   Unicode version

Theorem unblem2 8213
Description: Lemma for unbnn 8216. The value of the function  F belongs to the unbounded set of natural numbers  A. (Contributed by NM, 3-Dec-2003.)
Hypothesis
Ref Expression
unblem.2  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
Assertion
Ref Expression
unblem2  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Distinct variable groups:    w, v, x, z, A    v, F, w, z
Allowed substitution hint:    F( x)

Proof of Theorem unblem2
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( z  =  (/)  ->  ( F `
 z )  =  ( F `  (/) ) )
21eleq1d 2686 . . 3  |-  ( z  =  (/)  ->  ( ( F `  z )  e.  A  <->  ( F `  (/) )  e.  A
) )
3 fveq2 6191 . . . 4  |-  ( z  =  u  ->  ( F `  z )  =  ( F `  u ) )
43eleq1d 2686 . . 3  |-  ( z  =  u  ->  (
( F `  z
)  e.  A  <->  ( F `  u )  e.  A
) )
5 fveq2 6191 . . . 4  |-  ( z  =  suc  u  -> 
( F `  z
)  =  ( F `
 suc  u )
)
65eleq1d 2686 . . 3  |-  ( z  =  suc  u  -> 
( ( F `  z )  e.  A  <->  ( F `  suc  u
)  e.  A ) )
7 omsson 7069 . . . . . 6  |-  om  C_  On
8 sstr 3611 . . . . . 6  |-  ( ( A  C_  om  /\  om  C_  On )  ->  A  C_  On )
97, 8mpan2 707 . . . . 5  |-  ( A 
C_  om  ->  A  C_  On )
10 peano1 7085 . . . . . . . . 9  |-  (/)  e.  om
11 eleq1 2689 . . . . . . . . . . 11  |-  ( w  =  (/)  ->  ( w  e.  v  <->  (/)  e.  v ) )
1211rexbidv 3052 . . . . . . . . . 10  |-  ( w  =  (/)  ->  ( E. v  e.  A  w  e.  v  <->  E. v  e.  A  (/)  e.  v ) )
1312rspcv 3305 . . . . . . . . 9  |-  ( (/)  e.  om  ->  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v ) )
1410, 13ax-mp 5 . . . . . . . 8  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  e.  A  (/) 
e.  v )
15 df-rex 2918 . . . . . . . 8  |-  ( E. v  e.  A  (/)  e.  v  <->  E. v ( v  e.  A  /\  (/)  e.  v ) )
1614, 15sylib 208 . . . . . . 7  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v ( v  e.  A  /\  (/)  e.  v ) )
17 exsimpl 1795 . . . . . . 7  |-  ( E. v ( v  e.  A  /\  (/)  e.  v )  ->  E. v 
v  e.  A )
1816, 17syl 17 . . . . . 6  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  E. v  v  e.  A )
19 n0 3931 . . . . . 6  |-  ( A  =/=  (/)  <->  E. v  v  e.  A )
2018, 19sylibr 224 . . . . 5  |-  ( A. w  e.  om  E. v  e.  A  w  e.  v  ->  A  =/=  (/) )
21 onint 6995 . . . . 5  |-  ( ( A  C_  On  /\  A  =/=  (/) )  ->  |^| A  e.  A )
229, 20, 21syl2an 494 . . . 4  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  |^| A  e.  A )
23 unblem.2 . . . . . . . 8  |-  F  =  ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om )
2423fveq1i 6192 . . . . . . 7  |-  ( F `
 (/) )  =  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )
25 fr0g 7531 . . . . . . 7  |-  ( |^| A  e.  A  ->  ( ( rec ( ( x  e.  _V  |->  |^| ( A  \  suc  x ) ) , 
|^| A )  |`  om ) `  (/) )  = 
|^| A )
2624, 25syl5req 2669 . . . . . 6  |-  ( |^| A  e.  A  ->  |^| A  =  ( F `
 (/) ) )
2726eleq1d 2686 . . . . 5  |-  ( |^| A  e.  A  ->  (
|^| A  e.  A  <->  ( F `  (/) )  e.  A ) )
2827ibi 256 . . . 4  |-  ( |^| A  e.  A  ->  ( F `  (/) )  e.  A )
2922, 28syl 17 . . 3  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  (/) )  e.  A )
30 unblem1 8212 . . . . 5  |-  ( ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  ->  |^| ( A  \  suc  ( F `
 u ) )  e.  A )
31 suceq 5790 . . . . . . . . . . . 12  |-  ( y  =  x  ->  suc  y  =  suc  x )
3231difeq2d 3728 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( A  \  suc  y )  =  ( A  \  suc  x ) )
3332inteqd 4480 . . . . . . . . . 10  |-  ( y  =  x  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  x )
)
34 suceq 5790 . . . . . . . . . . . 12  |-  ( y  =  ( F `  u )  ->  suc  y  =  suc  ( F `
 u ) )
3534difeq2d 3728 . . . . . . . . . . 11  |-  ( y  =  ( F `  u )  ->  ( A  \  suc  y )  =  ( A  \  suc  ( F `  u
) ) )
3635inteqd 4480 . . . . . . . . . 10  |-  ( y  =  ( F `  u )  ->  |^| ( A  \  suc  y )  =  |^| ( A 
\  suc  ( F `  u ) ) )
3723, 33, 36frsucmpt2 7535 . . . . . . . . 9  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( F `  suc  u )  =  |^| ( A  \  suc  ( F `  u )
) )
3837eqcomd 2628 . . . . . . . 8  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  |^| ( A  \  suc  ( F `  u
) )  =  ( F `  suc  u
) )
3938eleq1d 2686 . . . . . . 7  |-  ( ( u  e.  om  /\  |^| ( A  \  suc  ( F `  u ) )  e.  A )  ->  ( |^| ( A  \  suc  ( F `
 u ) )  e.  A  <->  ( F `  suc  u )  e.  A ) )
4039ex 450 . . . . . 6  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( |^| ( A  \  suc  ( F `  u
) )  e.  A  <->  ( F `  suc  u
)  e.  A ) ) )
4140ibd 258 . . . . 5  |-  ( u  e.  om  ->  ( |^| ( A  \  suc  ( F `  u ) )  e.  A  -> 
( F `  suc  u )  e.  A
) )
4230, 41syl5 34 . . . 4  |-  ( u  e.  om  ->  (
( ( A  C_  om 
/\  A. w  e.  om  E. v  e.  A  w  e.  v )  /\  ( F `  u )  e.  A )  -> 
( F `  suc  u )  e.  A
) )
4342expd 452 . . 3  |-  ( u  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
( F `  u
)  e.  A  -> 
( F `  suc  u )  e.  A
) ) )
442, 4, 6, 29, 43finds2 7094 . 2  |-  ( z  e.  om  ->  (
( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  ( F `  z )  e.  A ) )
4544com12 32 1  |-  ( ( A  C_  om  /\  A. w  e.  om  E. v  e.  A  w  e.  v )  ->  (
z  e.  om  ->  ( F `  z )  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   |^|cint 4475    |-> cmpt 4729    |` cres 5116   Oncon0 5723   suc csuc 5725   ` cfv 5888   omcom 7065   reccrdg 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506
This theorem is referenced by:  unblem3  8214  unblem4  8215
  Copyright terms: Public domain W3C validator