MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdompw Structured version   Visualization version   Unicode version

Theorem pwsdompw 9026
Description: Lemma for domtriom 9265. This is the equinumerosity version of the algebraic identity  sum_ k  e.  n
( 2 ^ k
)  =  ( 2 ^ n )  - 
1. (Contributed by Mario Carneiro, 7-Feb-2013.)
Assertion
Ref Expression
pwsdompw  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( B `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)
Distinct variable group:    B, k, n

Proof of Theorem pwsdompw
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 suceq 5790 . . . . 5  |-  ( n  =  (/)  ->  suc  n  =  suc  (/) )
21raleqdv 3144 . . . 4  |-  ( n  =  (/)  ->  ( A. k  e.  suc  n ( B `  k ) 
~~  ~P k  <->  A. k  e.  suc  (/) ( B `  k )  ~~  ~P k ) )
3 iuneq1 4534 . . . . 5  |-  ( n  =  (/)  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e.  (/)  ( B `
 k ) )
4 fveq2 6191 . . . . 5  |-  ( n  =  (/)  ->  ( B `
 n )  =  ( B `  (/) ) )
53, 4breq12d 4666 . . . 4  |-  ( n  =  (/)  ->  ( U_ k  e.  n  ( B `  k )  ~<  ( B `  n
)  <->  U_ k  e.  (/)  ( B `  k ) 
~<  ( B `  (/) ) ) )
62, 5imbi12d 334 . . 3  |-  ( n  =  (/)  ->  ( ( A. k  e.  suc  n ( B `  k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
) )  <->  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  U_ k  e.  (/)  ( B `  k )  ~<  ( B `  (/) ) ) ) )
7 suceq 5790 . . . . 5  |-  ( n  =  m  ->  suc  n  =  suc  m )
87raleqdv 3144 . . . 4  |-  ( n  =  m  ->  ( A. k  e.  suc  n ( B `  k )  ~~  ~P k 
<-> 
A. k  e.  suc  m ( B `  k )  ~~  ~P k ) )
9 iuneq1 4534 . . . . 5  |-  ( n  =  m  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e.  m  ( B `  k )
)
10 fveq2 6191 . . . . 5  |-  ( n  =  m  ->  ( B `  n )  =  ( B `  m ) )
119, 10breq12d 4666 . . . 4  |-  ( n  =  m  ->  ( U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
)  <->  U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
) ) )
128, 11imbi12d 334 . . 3  |-  ( n  =  m  ->  (
( A. k  e. 
suc  n ( B `
 k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)  <->  ( A. k  e.  suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) ) )
13 suceq 5790 . . . . 5  |-  ( n  =  suc  m  ->  suc  n  =  suc  suc  m )
1413raleqdv 3144 . . . 4  |-  ( n  =  suc  m  -> 
( A. k  e. 
suc  n ( B `
 k )  ~~  ~P k  <->  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k ) )
15 iuneq1 4534 . . . . 5  |-  ( n  =  suc  m  ->  U_ k  e.  n  ( B `  k )  =  U_ k  e. 
suc  m ( B `
 k ) )
16 fveq2 6191 . . . . 5  |-  ( n  =  suc  m  -> 
( B `  n
)  =  ( B `
 suc  m )
)
1715, 16breq12d 4666 . . . 4  |-  ( n  =  suc  m  -> 
( U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
)  <->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) )
1814, 17imbi12d 334 . . 3  |-  ( n  =  suc  m  -> 
( ( A. k  e.  suc  n ( B `
 k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)  <->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  U_ k  e.  suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) ) )
19 0iun 4577 . . . 4  |-  U_ k  e.  (/)  ( B `  k )  =  (/)
20 0ex 4790 . . . . . . 7  |-  (/)  e.  _V
2120sucid 5804 . . . . . 6  |-  (/)  e.  suc  (/)
22 fveq2 6191 . . . . . . . 8  |-  ( k  =  (/)  ->  ( B `
 k )  =  ( B `  (/) ) )
23 pweq 4161 . . . . . . . 8  |-  ( k  =  (/)  ->  ~P k  =  ~P (/) )
2422, 23breq12d 4666 . . . . . . 7  |-  ( k  =  (/)  ->  ( ( B `  k ) 
~~  ~P k  <->  ( B `  (/) )  ~~  ~P (/) ) )
2524rspcv 3305 . . . . . 6  |-  ( (/)  e.  suc  (/)  ->  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  ( B `
 (/) )  ~~  ~P (/) ) )
2621, 25ax-mp 5 . . . . 5  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  ( B `
 (/) )  ~~  ~P (/) )
2720canth2 8113 . . . . . 6  |-  (/)  ~<  ~P (/)
28 ensym 8005 . . . . . 6  |-  ( ( B `  (/) )  ~~  ~P (/)  ->  ~P (/)  ~~  ( B `  (/) ) )
29 sdomentr 8094 . . . . . 6  |-  ( (
(/)  ~<  ~P (/)  /\  ~P (/)  ~~  ( B `  (/) ) )  ->  (/)  ~<  ( B `  (/) ) )
3027, 28, 29sylancr 695 . . . . 5  |-  ( ( B `  (/) )  ~~  ~P (/)  ->  (/)  ~<  ( B `  (/) ) )
3126, 30syl 17 . . . 4  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  (/)  ~<  ( B `  (/) ) )
3219, 31syl5eqbr 4688 . . 3  |-  ( A. k  e.  suc  (/) ( B `
 k )  ~~  ~P k  ->  U_ k  e.  (/)  ( B `  k )  ~<  ( B `  (/) ) )
33 sssucid 5802 . . . . . . . . 9  |-  suc  m  C_ 
suc  suc  m
34 ssralv 3666 . . . . . . . . 9  |-  ( suc  m  C_  suc  suc  m  ->  ( A. k  e. 
suc  suc  m ( B `
 k )  ~~  ~P k  ->  A. k  e.  suc  m ( B `
 k )  ~~  ~P k ) )
3533, 34ax-mp 5 . . . . . . . 8  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  A. k  e.  suc  m ( B `  k )  ~~  ~P k )
36 pm2.27 42 . . . . . . . 8  |-  ( A. k  e.  suc  m ( B `  k ) 
~~  ~P k  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
3735, 36syl 17 . . . . . . 7  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( ( A. k  e.  suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
3837adantl 482 . . . . . 6  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
) )
39 vex 3203 . . . . . . . . . . . . 13  |-  m  e. 
_V
4039sucid 5804 . . . . . . . . . . . 12  |-  m  e. 
suc  m
41 elelsuc 5797 . . . . . . . . . . . 12  |-  ( m  e.  suc  m  ->  m  e.  suc  suc  m
)
42 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( B `  k )  =  ( B `  m ) )
43 pweq 4161 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ~P k  =  ~P m
)
4442, 43breq12d 4666 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( B `  k
)  ~~  ~P k  <->  ( B `  m ) 
~~  ~P m ) )
4544rspcv 3305 . . . . . . . . . . . 12  |-  ( m  e.  suc  suc  m  ->  ( A. k  e. 
suc  suc  m ( B `
 k )  ~~  ~P k  ->  ( B `
 m )  ~~  ~P m ) )
4640, 41, 45mp2b 10 . . . . . . . . . . 11  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( B `  m
)  ~~  ~P m
)
47 cdaen 8995 . . . . . . . . . . 11  |-  ( ( ( B `  m
)  ~~  ~P m  /\  ( B `  m
)  ~~  ~P m
)  ->  ( ( B `  m )  +c  ( B `  m
) )  ~~  ( ~P m  +c  ~P m
) )
4846, 46, 47syl2anc 693 . . . . . . . . . 10  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( ( B `  m )  +c  ( B `  m )
)  ~~  ( ~P m  +c  ~P m ) )
49 pwcda1 9016 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ( ~P m  +c  ~P m
)  ~~  ~P (
m  +c  1o ) )
50 nnord 7073 . . . . . . . . . . . . . 14  |-  ( m  e.  om  ->  Ord  m )
51 ordirr 5741 . . . . . . . . . . . . . 14  |-  ( Ord  m  ->  -.  m  e.  m )
5250, 51syl 17 . . . . . . . . . . . . 13  |-  ( m  e.  om  ->  -.  m  e.  m )
53 cda1en 8997 . . . . . . . . . . . . 13  |-  ( ( m  e.  om  /\  -.  m  e.  m
)  ->  ( m  +c  1o )  ~~  suc  m )
5452, 53mpdan 702 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  (
m  +c  1o ) 
~~  suc  m )
55 pwen 8133 . . . . . . . . . . . 12  |-  ( ( m  +c  1o ) 
~~  suc  m  ->  ~P ( m  +c  1o )  ~~  ~P suc  m
)
5654, 55syl 17 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ~P ( m  +c  1o )  ~~  ~P suc  m
)
57 entr 8008 . . . . . . . . . . 11  |-  ( ( ( ~P m  +c  ~P m )  ~~  ~P ( m  +c  1o )  /\  ~P ( m  +c  1o )  ~~  ~P suc  m )  -> 
( ~P m  +c  ~P m )  ~~  ~P suc  m )
5849, 56, 57syl2anc 693 . . . . . . . . . 10  |-  ( m  e.  om  ->  ( ~P m  +c  ~P m
)  ~~  ~P suc  m )
59 entr 8008 . . . . . . . . . 10  |-  ( ( ( ( B `  m )  +c  ( B `  m )
)  ~~  ( ~P m  +c  ~P m )  /\  ( ~P m  +c  ~P m )  ~~  ~P suc  m )  -> 
( ( B `  m )  +c  ( B `  m )
)  ~~  ~P suc  m )
6048, 58, 59syl2an 494 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ~P suc  m )
6139sucex 7011 . . . . . . . . . . . . 13  |-  suc  m  e.  _V
6261sucid 5804 . . . . . . . . . . . 12  |-  suc  m  e.  suc  suc  m
63 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( k  =  suc  m  -> 
( B `  k
)  =  ( B `
 suc  m )
)
64 pweq 4161 . . . . . . . . . . . . . 14  |-  ( k  =  suc  m  ->  ~P k  =  ~P suc  m )
6563, 64breq12d 4666 . . . . . . . . . . . . 13  |-  ( k  =  suc  m  -> 
( ( B `  k )  ~~  ~P k 
<->  ( B `  suc  m )  ~~  ~P suc  m ) )
6665rspcv 3305 . . . . . . . . . . . 12  |-  ( suc  m  e.  suc  suc  m  ->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  ( B `  suc  m ) 
~~  ~P suc  m ) )
6762, 66ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ( B `  suc  m )  ~~  ~P suc  m )
6867ensymd 8007 . . . . . . . . . 10  |-  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  ~P suc  m  ~~  ( B `  suc  m
) )
6968adantr 481 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ~P suc  m  ~~  ( B `  suc  m ) )
70 entr 8008 . . . . . . . . 9  |-  ( ( ( ( B `  m )  +c  ( B `  m )
)  ~~  ~P suc  m  /\  ~P suc  m  ~~  ( B `  suc  m ) )  -> 
( ( B `  m )  +c  ( B `  m )
)  ~~  ( B `  suc  m ) )
7160, 69, 70syl2anc 693 . . . . . . . 8  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ( B `  suc  m ) )
7271ancoms 469 . . . . . . 7  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( B `  m
)  +c  ( B `
 m ) ) 
~~  ( B `  suc  m ) )
73 nnfi 8153 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  m  e.  Fin )
74 pwfi 8261 . . . . . . . . . . . . 13  |-  ( m  e.  Fin  <->  ~P m  e.  Fin )
75 isfinite 8549 . . . . . . . . . . . . 13  |-  ( ~P m  e.  Fin  <->  ~P m  ~<  om )
7674, 75bitri 264 . . . . . . . . . . . 12  |-  ( m  e.  Fin  <->  ~P m  ~<  om )
7773, 76sylib 208 . . . . . . . . . . 11  |-  ( m  e.  om  ->  ~P m  ~<  om )
78 ensdomtr 8096 . . . . . . . . . . 11  |-  ( ( ( B `  m
)  ~~  ~P m  /\  ~P m  ~<  om )  ->  ( B `  m
)  ~<  om )
7946, 77, 78syl2an 494 . . . . . . . . . 10  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( B `  m )  ~<  om )
80 isfinite 8549 . . . . . . . . . 10  |-  ( ( B `  m )  e.  Fin  <->  ( B `  m )  ~<  om )
8179, 80sylibr 224 . . . . . . . . 9  |-  ( ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  /\  m  e.  om )  ->  ( B `  m )  e.  Fin )
8281ancoms 469 . . . . . . . 8  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( B `  m )  e.  Fin )
8339, 42iunsuc 5807 . . . . . . . . . . 11  |-  U_ k  e.  suc  m ( B `
 k )  =  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m )
)
84 fvex 6201 . . . . . . . . . . . . 13  |-  ( B `
 k )  e. 
_V
8539, 84iunex 7147 . . . . . . . . . . . 12  |-  U_ k  e.  m  ( B `  k )  e.  _V
86 fvex 6201 . . . . . . . . . . . 12  |-  ( B `
 m )  e. 
_V
87 uncdadom 8993 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k )  e.  _V  /\  ( B `  m )  e.  _V )  ->  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m ) )  ~<_  (
U_ k  e.  m  ( B `  k )  +c  ( B `  m ) ) )
8885, 86, 87mp2an 708 . . . . . . . . . . 11  |-  ( U_ k  e.  m  ( B `  k )  u.  ( B `  m
) )  ~<_  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m
) )
8983, 88eqbrtri 4674 . . . . . . . . . 10  |-  U_ k  e.  suc  m ( B `
 k )  ~<_  (
U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )
90 sdomtr 8098 . . . . . . . . . . . . . . . 16  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  ~<  om )  ->  U_ k  e.  m  ( B `  k ) 
~<  om )
9180, 90sylan2b 492 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k ) 
~<  om )
92 isfinite 8549 . . . . . . . . . . . . . . 15  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  <->  U_ k  e.  m  ( B `  k ) 
~<  om )
9391, 92sylibr 224 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k )  e.  Fin )
94 finnum 8774 . . . . . . . . . . . . . 14  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  ->  U_ k  e.  m  ( B `  k )  e.  dom  card )
9593, 94syl 17 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k )  e.  dom  card )
96 finnum 8774 . . . . . . . . . . . . . 14  |-  ( ( B `  m )  e.  Fin  ->  ( B `  m )  e.  dom  card )
9796adantl 482 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( B `  m )  e.  dom  card )
98 cardacda 9020 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k )  e.  dom  card  /\  ( B `  m )  e.  dom  card )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) ) )
9995, 97, 98syl2anc 693 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) ) )
100 ficardom 8787 . . . . . . . . . . . . . . . 16  |-  ( U_ k  e.  m  ( B `  k )  e.  Fin  ->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  om )
10193, 100syl 17 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om )
102 ficardom 8787 . . . . . . . . . . . . . . . 16  |-  ( ( B `  m )  e.  Fin  ->  ( card `  ( B `  m ) )  e. 
om )
103102adantl 482 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  ( B `  m )
)  e.  om )
104 cardid2 8779 . . . . . . . . . . . . . . . . . 18  |-  ( U_ k  e.  m  ( B `  k )  e.  dom  card  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k ) )
10593, 94, 1043syl 18 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k ) )
106 simpl 473 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
) )
107 cardid2 8779 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B `  m )  e.  dom  card  ->  (
card `  ( B `  m ) )  ~~  ( B `  m ) )
108 ensym 8005 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  ( B `  m ) )  ~~  ( B `  m )  ->  ( B `  m )  ~~  ( card `  ( B `  m ) ) )
10996, 107, 1083syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ( B `  m )  e.  Fin  ->  ( B `  m )  ~~  ( card `  ( B `  m )
) )
110109adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( B `  m )  ~~  ( card `  ( B `  m ) ) )
111 ensdomtr 8096 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k )  /\  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  ( card ` 
U_ k  e.  m  ( B `  k ) )  ~<  ( B `  m ) )
112 sdomentr 8094 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( B `  m
)  /\  ( B `  m )  ~~  ( card `  ( B `  m ) ) )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
113111, 112sylan 488 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( card `  U_ k  e.  m  ( B `  k ) )  ~~  U_ k  e.  m  ( B `  k )  /\  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  /\  ( B `  m )  ~~  ( card `  ( B `  m ) ) )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
114105, 106, 110, 113syl21anc 1325 . . . . . . . . . . . . . . . 16  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) ) )
115 cardon 8770 . . . . . . . . . . . . . . . . . 18  |-  ( card `  U_ k  e.  m  ( B `  k ) )  e.  On
116 cardon 8770 . . . . . . . . . . . . . . . . . . 19  |-  ( card `  ( B `  m
) )  e.  On
117 onenon 8775 . . . . . . . . . . . . . . . . . . 19  |-  ( (
card `  ( B `  m ) )  e.  On  ->  ( card `  ( B `  m
) )  e.  dom  card )
118116, 117ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( card `  ( B `  m
) )  e.  dom  card
119 cardsdomel 8800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e.  On  /\  ( card `  ( B `  m
) )  e.  dom  card )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m )
) ) ) )
120115, 118, 119mp2an 708 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m )
) ) )
121 cardidm 8785 . . . . . . . . . . . . . . . . . 18  |-  ( card `  ( card `  ( B `  m )
) )  =  (
card `  ( B `  m ) )
122121eleq2i 2693 . . . . . . . . . . . . . . . . 17  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( card `  ( B `  m ) ) )  <-> 
( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )
123120, 122bitri 264 . . . . . . . . . . . . . . . 16  |-  ( (
card `  U_ k  e.  m  ( B `  k ) )  ~< 
( card `  ( B `  m ) )  <->  ( card ` 
U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m
) ) )
124114, 123sylib 208 . . . . . . . . . . . . . . 15  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )
125 nnaordr 7700 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om  /\  ( card `  ( B `  m
) )  e.  om  /\  ( card `  ( B `  m )
)  e.  om )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
)  <->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) ) )
126125biimpa 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( card `  U_ k  e.  m  ( B `  k ) )  e. 
om  /\  ( card `  ( B `  m
) )  e.  om  /\  ( card `  ( B `  m )
)  e.  om )  /\  ( card `  U_ k  e.  m  ( B `  k ) )  e.  ( card `  ( B `  m )
) )  ->  (
( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
127101, 103, 103, 124, 126syl31anc 1329 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
128 nnacl 7691 . . . . . . . . . . . . . . . . 17  |-  ( ( ( card `  ( B `  m )
)  e.  om  /\  ( card `  ( B `  m ) )  e. 
om )  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  e.  om )
129102, 102, 128syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( B `  m )  e.  Fin  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  e.  om )
130 cardnn 8789 . . . . . . . . . . . . . . . 16  |-  ( ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) )  e. 
om  ->  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  =  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
131129, 130syl 17 . . . . . . . . . . . . . . 15  |-  ( ( B `  m )  e.  Fin  ->  ( card `  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )  =  ( (
card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
132131adantl 482 . . . . . . . . . . . . . 14  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  =  ( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
133127, 132eleqtrrd 2704 . . . . . . . . . . . . 13  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  e.  ( card `  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) ) )
134 cardsdomelir 8799 . . . . . . . . . . . . 13  |-  ( ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  e.  (
card `  ( ( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  -> 
( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  ~<  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
135133, 134syl 17 . . . . . . . . . . . 12  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m
) ) )  ~< 
( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
136 ensdomtr 8096 . . . . . . . . . . . 12  |-  ( ( ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~~  ( ( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  /\  (
( card `  U_ k  e.  m  ( B `  k ) )  +o  ( card `  ( B `  m )
) )  ~<  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )  -> 
( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( card `  ( B `  m )
)  +o  ( card `  ( B `  m
) ) ) )
13799, 135, 136syl2anc 693 . . . . . . . . . . 11  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )
138 cardacda 9020 . . . . . . . . . . . . . 14  |-  ( ( ( B `  m
)  e.  dom  card  /\  ( B `  m
)  e.  dom  card )  ->  ( ( B `
 m )  +c  ( B `  m
) )  ~~  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) ) )
13996, 96, 138syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( B `  m )  e.  Fin  ->  (
( B `  m
)  +c  ( B `
 m ) ) 
~~  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) )
140139ensymd 8007 . . . . . . . . . . . 12  |-  ( ( B `  m )  e.  Fin  ->  (
( card `  ( B `  m ) )  +o  ( card `  ( B `  m )
) )  ~~  (
( B `  m
)  +c  ( B `
 m ) ) )
141140adantl 482 . . . . . . . . . . 11  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) 
~~  ( ( B `
 m )  +c  ( B `  m
) ) )
142 sdomentr 8094 . . . . . . . . . . 11  |-  ( ( ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) )  /\  ( ( card `  ( B `  m
) )  +o  ( card `  ( B `  m ) ) ) 
~~  ( ( B `
 m )  +c  ( B `  m
) ) )  -> 
( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( B `  m )  +c  ( B `  m )
) )
143137, 141, 142syl2anc 693 . . . . . . . . . 10  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m )
)  ~<  ( ( B `
 m )  +c  ( B `  m
) ) )
144 domsdomtr 8095 . . . . . . . . . 10  |-  ( (
U_ k  e.  suc  m ( B `  k )  ~<_  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m
) )  /\  ( U_ k  e.  m  ( B `  k )  +c  ( B `  m ) )  ~< 
( ( B `  m )  +c  ( B `  m )
) )  ->  U_ k  e.  suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) )
14589, 143, 144sylancr 695 . . . . . . . . 9  |-  ( (
U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  /\  ( B `  m )  e.  Fin )  ->  U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) ) )
146145expcom 451 . . . . . . . 8  |-  ( ( B `  m )  e.  Fin  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) ) )
14782, 146syl 17 . . . . . . 7  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( ( B `  m )  +c  ( B `  m )
) ) )
148 sdomentr 8094 . . . . . . . 8  |-  ( (
U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) )  /\  ( ( B `
 m )  +c  ( B `  m
) )  ~~  ( B `  suc  m ) )  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) )
149148expcom 451 . . . . . . 7  |-  ( ( ( B `  m
)  +c  ( B `
 m ) ) 
~~  ( B `  suc  m )  ->  ( U_ k  e.  suc  m ( B `  k )  ~<  (
( B `  m
)  +c  ( B `
 m ) )  ->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) )
15072, 147, 149sylsyld 61 . . . . . 6  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  ( U_ k  e.  m  ( B `  k ) 
~<  ( B `  m
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) )
15138, 150syld 47 . . . . 5  |-  ( ( m  e.  om  /\  A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k )  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) )
152151ex 450 . . . 4  |-  ( m  e.  om  ->  ( A. k  e.  suc  suc  m ( B `  k )  ~~  ~P k  ->  ( ( A. k  e.  suc  m ( B `  k ) 
~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  U_ k  e. 
suc  m ( B `
 k )  ~< 
( B `  suc  m ) ) ) )
153152com23 86 . . 3  |-  ( m  e.  om  ->  (
( A. k  e. 
suc  m ( B `
 k )  ~~  ~P k  ->  U_ k  e.  m  ( B `  k )  ~<  ( B `  m )
)  ->  ( A. k  e.  suc  suc  m
( B `  k
)  ~~  ~P k  ->  U_ k  e.  suc  m ( B `  k )  ~<  ( B `  suc  m ) ) ) )
1546, 12, 18, 32, 153finds1 7095 . 2  |-  ( n  e.  om  ->  ( A. k  e.  suc  n ( B `  k )  ~~  ~P k  ->  U_ k  e.  n  ( B `  k ) 
~<  ( B `  n
) ) )
155154imp 445 1  |-  ( ( n  e.  om  /\  A. k  e.  suc  n
( B `  k
)  ~~  ~P k
)  ->  U_ k  e.  n  ( B `  k )  ~<  ( B `  n )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U_ciun 4520   class class class wbr 4653   dom cdm 5114   Ord word 5722   Oncon0 5723   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   1oc1o 7553    +o coa 7557    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  domtriomlem  9264
  Copyright terms: Public domain W3C validator