MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infdif Structured version   Visualization version   Unicode version

Theorem infdif 9031
Description: The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
infdif  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~~  A )

Proof of Theorem infdif
StepHypRef Expression
1 simp1 1061 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  e.  dom  card )
2 difss 3737 . . 3  |-  ( A 
\  B )  C_  A
3 ssdomg 8001 . . 3  |-  ( A  e.  dom  card  ->  ( ( A  \  B
)  C_  A  ->  ( A  \  B )  ~<_  A ) )
41, 2, 3mpisyl 21 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~<_  A )
5 sdomdom 7983 . . . . . . . . 9  |-  ( B 
~<  A  ->  B  ~<_  A )
653ad2ant3 1084 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<_  A )
7 numdom 8861 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\  B  ~<_  A )  ->  B  e.  dom  card )
81, 6, 7syl2anc 693 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  e.  dom  card )
9 unnum 9022 . . . . . . 7  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( A  u.  B )  e.  dom  card )
101, 8, 9syl2anc 693 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  u.  B )  e.  dom  card )
11 ssun1 3776 . . . . . 6  |-  A  C_  ( A  u.  B
)
12 ssdomg 8001 . . . . . 6  |-  ( ( A  u.  B )  e.  dom  card  ->  ( A  C_  ( A  u.  B )  ->  A  ~<_  ( A  u.  B
) ) )
1310, 11, 12mpisyl 21 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( A  u.  B
) )
14 undif1 4043 . . . . . 6  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
15 ssnum 8862 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\  ( A  \  B
)  C_  A )  ->  ( A  \  B
)  e.  dom  card )
161, 2, 15sylancl 694 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  e. 
dom  card )
17 uncdadom 8993 . . . . . . 7  |-  ( ( ( A  \  B
)  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( A 
\  B )  u.  B )  ~<_  ( ( A  \  B )  +c  B ) )
1816, 8, 17syl2anc 693 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )
1914, 18syl5eqbrr 4689 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )
20 domtr 8009 . . . . 5  |-  ( ( A  ~<_  ( A  u.  B )  /\  ( A  u.  B )  ~<_  ( ( A  \  B )  +c  B
) )  ->  A  ~<_  ( ( A  \  B )  +c  B
) )
2113, 19, 20syl2anc 693 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( ( A  \  B )  +c  B
) )
22 simp3 1063 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<  A )
23 sdomdom 7983 . . . . . . . . 9  |-  ( ( A  \  B ) 
~<  B  ->  ( A 
\  B )  ~<_  B )
24 cdadom1 9008 . . . . . . . . 9  |-  ( ( A  \  B )  ~<_  B  ->  ( ( A  \  B )  +c  B )  ~<_  ( B  +c  B ) )
2523, 24syl 17 . . . . . . . 8  |-  ( ( A  \  B ) 
~<  B  ->  ( ( A  \  B )  +c  B )  ~<_  ( B  +c  B ) )
26 domtr 8009 . . . . . . . . . . 11  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  B )  /\  (
( A  \  B
)  +c  B )  ~<_  ( B  +c  B
) )  ->  A  ~<_  ( B  +c  B
) )
2726ex 450 . . . . . . . . . 10  |-  ( A  ~<_  ( ( A  \  B )  +c  B
)  ->  ( (
( A  \  B
)  +c  B )  ~<_  ( B  +c  B
)  ->  A  ~<_  ( B  +c  B ) ) )
2821, 27syl 17 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( ( A  \  B )  +c  B
)  ~<_  ( B  +c  B )  ->  A  ~<_  ( B  +c  B
) ) )
29 simp2 1062 . . . . . . . . . . . 12  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  A )
30 domtr 8009 . . . . . . . . . . . . 13  |-  ( ( om  ~<_  A  /\  A  ~<_  ( B  +c  B
) )  ->  om  ~<_  ( B  +c  B ) )
3130ex 450 . . . . . . . . . . . 12  |-  ( om  ~<_  A  ->  ( A  ~<_  ( B  +c  B
)  ->  om  ~<_  ( B  +c  B ) ) )
3229, 31syl 17 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  om  ~<_  ( B  +c  B ) ) )
33 cdainf 9014 . . . . . . . . . . . . 13  |-  ( om  ~<_  B  <->  om  ~<_  ( B  +c  B ) )
3433biimpri 218 . . . . . . . . . . . 12  |-  ( om  ~<_  ( B  +c  B
)  ->  om  ~<_  B )
35 domrefg 7990 . . . . . . . . . . . . 13  |-  ( B  e.  dom  card  ->  B  ~<_  B )
36 infcdaabs 9028 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  dom  card  /\ 
om  ~<_  B  /\  B  ~<_  B )  ->  ( B  +c  B )  ~~  B )
37363com23 1271 . . . . . . . . . . . . . 14  |-  ( ( B  e.  dom  card  /\  B  ~<_  B  /\  om  ~<_  B )  ->  ( B  +c  B )  ~~  B )
38373expia 1267 . . . . . . . . . . . . 13  |-  ( ( B  e.  dom  card  /\  B  ~<_  B )  -> 
( om  ~<_  B  -> 
( B  +c  B
)  ~~  B )
)
3935, 38mpdan 702 . . . . . . . . . . . 12  |-  ( B  e.  dom  card  ->  ( om  ~<_  B  ->  ( B  +c  B )  ~~  B ) )
408, 34, 39syl2im 40 . . . . . . . . . . 11  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( om 
~<_  ( B  +c  B
)  ->  ( B  +c  B )  ~~  B
) )
4132, 40syld 47 . . . . . . . . . 10  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  ( B  +c  B )  ~~  B ) )
42 domen2 8103 . . . . . . . . . . 11  |-  ( ( B  +c  B ) 
~~  B  ->  ( A  ~<_  ( B  +c  B )  <->  A  ~<_  B ) )
4342biimpcd 239 . . . . . . . . . 10  |-  ( A  ~<_  ( B  +c  B
)  ->  ( ( B  +c  B )  ~~  B  ->  A  ~<_  B ) )
4441, 43sylcom 30 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  ~<_  ( B  +c  B )  ->  A  ~<_  B ) )
4528, 44syld 47 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( ( A  \  B )  +c  B
)  ~<_  ( B  +c  B )  ->  A  ~<_  B ) )
46 domnsym 8086 . . . . . . . 8  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
4725, 45, 46syl56 36 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  ~<  B  ->  -.  B  ~<  A ) )
4822, 47mt2d 131 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  -.  ( A  \  B ) 
~<  B )
49 domtri2 8815 . . . . . . 7  |-  ( ( B  e.  dom  card  /\  ( A  \  B
)  e.  dom  card )  ->  ( B  ~<_  ( A  \  B )  <->  -.  ( A  \  B
)  ~<  B ) )
508, 16, 49syl2anc 693 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( B  ~<_  ( A  \  B )  <->  -.  ( A  \  B )  ~<  B ) )
5148, 50mpbird 247 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  B  ~<_  ( A  \  B ) )
52 cdadom2 9009 . . . . 5  |-  ( B  ~<_  ( A  \  B
)  ->  ( ( A  \  B )  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5351, 52syl 17 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
54 domtr 8009 . . . 4  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  B )  /\  (
( A  \  B
)  +c  B )  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )  ->  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5521, 53, 54syl2anc 693 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
56 domtr 8009 . . . . . 6  |-  ( ( om  ~<_  A  /\  A  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )  ->  om  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
5729, 55, 56syl2anc 693 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  ( ( A  \  B )  +c  ( A  \  B ) ) )
58 cdainf 9014 . . . . 5  |-  ( om  ~<_  ( A  \  B
)  <->  om  ~<_  ( ( A 
\  B )  +c  ( A  \  B
) ) )
5957, 58sylibr 224 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  om  ~<_  ( A 
\  B ) )
60 domrefg 7990 . . . . 5  |-  ( ( A  \  B )  e.  dom  card  ->  ( A  \  B )  ~<_  ( A  \  B
) )
6116, 60syl 17 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~<_  ( A  \  B ) )
62 infcdaabs 9028 . . . 4  |-  ( ( ( A  \  B
)  e.  dom  card  /\ 
om  ~<_  ( A  \  B )  /\  ( A  \  B )  ~<_  ( A  \  B ) )  ->  ( ( A  \  B )  +c  ( A  \  B
) )  ~~  ( A  \  B ) )
6316, 59, 61, 62syl3anc 1326 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  (
( A  \  B
)  +c  ( A 
\  B ) ) 
~~  ( A  \  B ) )
64 domentr 8015 . . 3  |-  ( ( A  ~<_  ( ( A 
\  B )  +c  ( A  \  B
) )  /\  (
( A  \  B
)  +c  ( A 
\  B ) ) 
~~  ( A  \  B ) )  ->  A  ~<_  ( A  \  B ) )
6555, 63, 64syl2anc 693 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  A  ~<_  ( A  \  B ) )
66 sbth 8080 . 2  |-  ( ( ( A  \  B
)  ~<_  A  /\  A  ~<_  ( A  \  B ) )  ->  ( A  \  B )  ~~  A
)
674, 65, 66syl2anc 693 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A  /\  B  ~<  A )  ->  ( A  \  B )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990    \ cdif 3571    u. cun 3572    C_ wss 3574   class class class wbr 4653   dom cdm 5114  (class class class)co 6650   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-cda 8990
This theorem is referenced by:  infdif2  9032  alephsuc3  9402  aleph1irr  14975
  Copyright terms: Public domain W3C validator