MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpdom2 Structured version   Visualization version   Unicode version

Theorem unxpdom2 8168
Description: Corollary of unxpdom 8167. (Contributed by NM, 16-Sep-2004.)
Assertion
Ref Expression
unxpdom2  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~<_  ( A  X.  A ) )

Proof of Theorem unxpdom2
StepHypRef Expression
1 relsdom 7962 . . . . . . . 8  |-  Rel  ~<
21brrelex2i 5159 . . . . . . 7  |-  ( 1o 
~<  A  ->  A  e. 
_V )
32adantr 481 . . . . . 6  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  A  e.  _V )
4 1onn 7719 . . . . . 6  |-  1o  e.  om
5 xpsneng 8045 . . . . . 6  |-  ( ( A  e.  _V  /\  1o  e.  om )  -> 
( A  X.  { 1o } )  ~~  A
)
63, 4, 5sylancl 694 . . . . 5  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( A  X.  { 1o } )  ~~  A
)
76ensymd 8007 . . . 4  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  A  ~~  ( A  X.  { 1o } ) )
8 endom 7982 . . . 4  |-  ( A 
~~  ( A  X.  { 1o } )  ->  A  ~<_  ( A  X.  { 1o } ) )
97, 8syl 17 . . 3  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  A  ~<_  ( A  X.  { 1o } ) )
10 simpr 477 . . . 4  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  B  ~<_  A )
11 0ex 4790 . . . . . 6  |-  (/)  e.  _V
12 xpsneng 8045 . . . . . 6  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
133, 11, 12sylancl 694 . . . . 5  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( A  X.  { (/)
} )  ~~  A
)
1413ensymd 8007 . . . 4  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  A  ~~  ( A  X.  { (/) } ) )
15 domentr 8015 . . . 4  |-  ( ( B  ~<_  A  /\  A  ~~  ( A  X.  { (/)
} ) )  ->  B  ~<_  ( A  X.  { (/) } ) )
1610, 14, 15syl2anc 693 . . 3  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  B  ~<_  ( A  X.  { (/) } ) )
17 1n0 7575 . . . 4  |-  1o  =/=  (/)
18 xpsndisj 5557 . . . 4  |-  ( 1o  =/=  (/)  ->  ( ( A  X.  { 1o }
)  i^i  ( A  X.  { (/) } ) )  =  (/) )
1917, 18mp1i 13 . . 3  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( ( A  X.  { 1o } )  i^i  ( A  X.  { (/)
} ) )  =  (/) )
20 undom 8048 . . 3  |-  ( ( ( A  ~<_  ( A  X.  { 1o }
)  /\  B  ~<_  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  i^i  ( A  X.  { (/) } ) )  =  (/) )  -> 
( A  u.  B
)  ~<_  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) ) )
219, 16, 19, 20syl21anc 1325 . 2  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~<_  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) ) )
22 sdomentr 8094 . . . . 5  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { 1o } ) )  ->  1o  ~<  ( A  X.  { 1o }
) )
237, 22syldan 487 . . . 4  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  1o  ~<  ( A  X.  { 1o } ) )
24 sdomentr 8094 . . . . 5  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { (/) } ) )  ->  1o  ~<  ( A  X.  { (/) } ) )
2514, 24syldan 487 . . . 4  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  ->  1o  ~<  ( A  X.  { (/) } ) )
26 unxpdom 8167 . . . 4  |-  ( ( 1o  ~<  ( A  X.  { 1o } )  /\  1o  ~<  ( A  X.  { (/) } ) )  ->  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
2723, 25, 26syl2anc 693 . . 3  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( ( A  X.  { 1o } )  u.  ( A  X.  { (/)
} ) )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) ) )
28 xpen 8123 . . . 4  |-  ( ( ( A  X.  { 1o } )  ~~  A  /\  ( A  X.  { (/)
} )  ~~  A
)  ->  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )
296, 13, 28syl2anc 693 . . 3  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( ( A  X.  { 1o } )  X.  ( A  X.  { (/)
} ) )  ~~  ( A  X.  A
) )
30 domentr 8015 . . 3  |-  ( ( ( ( A  X.  { 1o } )  u.  ( A  X.  { (/)
} ) )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )  ->  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) )  ~<_  ( A  X.  A ) )
3127, 29, 30syl2anc 693 . 2  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( ( A  X.  { 1o } )  u.  ( A  X.  { (/)
} ) )  ~<_  ( A  X.  A ) )
32 domtr 8009 . 2  |-  ( ( ( A  u.  B
)  ~<_  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  ~<_  ( A  X.  A ) )  -> 
( A  u.  B
)  ~<_  ( A  X.  A ) )
3321, 31, 32syl2anc 693 1  |-  ( ( 1o  ~<  A  /\  B  ~<_  A )  -> 
( A  u.  B
)  ~<_  ( A  X.  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   omcom 7065   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator