![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2ndfval | Structured version Visualization version GIF version |
Description: Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
1stfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
1stfval.b | ⊢ 𝐵 = (Base‘𝑇) |
1stfval.h | ⊢ 𝐻 = (Hom ‘𝑇) |
1stfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
1stfval.d | ⊢ (𝜑 → 𝐷 ∈ Cat) |
2ndfval.p | ⊢ 𝑄 = (𝐶 2ndF 𝐷) |
Ref | Expression |
---|---|
2ndfval | ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndfval.p | . 2 ⊢ 𝑄 = (𝐶 2ndF 𝐷) | |
2 | 1stfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | 1stfval.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ Cat) | |
4 | fvex 6201 | . . . . . . 7 ⊢ (Base‘𝑐) ∈ V | |
5 | fvex 6201 | . . . . . . 7 ⊢ (Base‘𝑑) ∈ V | |
6 | 4, 5 | xpex 6962 | . . . . . 6 ⊢ ((Base‘𝑐) × (Base‘𝑑)) ∈ V |
7 | 6 | a1i 11 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) ∈ V) |
8 | simpl 473 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑐 = 𝐶) | |
9 | 8 | fveq2d 6195 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑐) = (Base‘𝐶)) |
10 | simpr 477 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | |
11 | 10 | fveq2d 6195 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → (Base‘𝑑) = (Base‘𝐷)) |
12 | 9, 11 | xpeq12d 5140 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = ((Base‘𝐶) × (Base‘𝐷))) |
13 | 1stfval.t | . . . . . . . 8 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
14 | eqid 2622 | . . . . . . . 8 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
15 | eqid 2622 | . . . . . . . 8 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
16 | 13, 14, 15 | xpcbas 16818 | . . . . . . 7 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = (Base‘𝑇) |
17 | 1stfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑇) | |
18 | 16, 17 | eqtr4i 2647 | . . . . . 6 ⊢ ((Base‘𝐶) × (Base‘𝐷)) = 𝐵 |
19 | 12, 18 | syl6eq 2672 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ((Base‘𝑐) × (Base‘𝑑)) = 𝐵) |
20 | simpr 477 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | |
21 | 20 | reseq2d 5396 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd ↾ 𝑏) = (2nd ↾ 𝐵)) |
22 | simpll 790 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶) | |
23 | simplr 792 | . . . . . . . . . . . . 13 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) | |
24 | 22, 23 | oveq12d 6668 | . . . . . . . . . . . 12 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = (𝐶 ×c 𝐷)) |
25 | 24, 13 | syl6eqr 2674 | . . . . . . . . . . 11 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑐 ×c 𝑑) = 𝑇) |
26 | 25 | fveq2d 6195 | . . . . . . . . . 10 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = (Hom ‘𝑇)) |
27 | 1stfval.h | . . . . . . . . . 10 ⊢ 𝐻 = (Hom ‘𝑇) | |
28 | 26, 27 | syl6eqr 2674 | . . . . . . . . 9 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Hom ‘(𝑐 ×c 𝑑)) = 𝐻) |
29 | 28 | oveqd 6667 | . . . . . . . 8 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦) = (𝑥𝐻𝑦)) |
30 | 29 | reseq2d 5396 | . . . . . . 7 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)) = (2nd ↾ (𝑥𝐻𝑦))) |
31 | 20, 20, 30 | mpt2eq123dv 6717 | . . . . . 6 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))) |
32 | 21, 31 | opeq12d 4410 | . . . . 5 ⊢ (((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
33 | 7, 19, 32 | csbied2 3561 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
34 | df-2ndf 16814 | . . . 4 ⊢ 2ndF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⦋((Base‘𝑐) × (Base‘𝑑)) / 𝑏⦌〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑐 ×c 𝑑))𝑦)))〉) | |
35 | opex 4932 | . . . 4 ⊢ 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉 ∈ V | |
36 | 33, 34, 35 | ovmpt2a 6791 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 2ndF 𝐷) = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
37 | 2, 3, 36 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐶 2ndF 𝐷) = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
38 | 1, 37 | syl5eq 2668 | 1 ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ⦋csb 3533 〈cop 4183 × cxp 5112 ↾ cres 5116 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 2nd c2nd 7167 Basecbs 15857 Hom chom 15952 Catccat 16325 ×c cxpc 16808 2ndF c2ndf 16810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-fz 12327 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-hom 15966 df-cco 15967 df-xpc 16812 df-2ndf 16814 |
This theorem is referenced by: 2ndf1 16835 2ndf2 16836 2ndfcl 16838 |
Copyright terms: Public domain | W3C validator |